Advanced Search
CHEN Yi-ping, HU De-an, MA Lin, LI Tang-bai. Neural Network Model for DC Spot Welding of Aluminum-alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 20-23.
Citation: CHEN Yi-ping, HU De-an, MA Lin, LI Tang-bai. Neural Network Model for DC Spot Welding of Aluminum-alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 20-23.

Neural Network Model for DC Spot Welding of Aluminum-alloy

More Information
  • Received Date: May 07, 2000
  • The weldability of alumimum-alloy 508 for DC spot welding is studied by use of DC spot welder and dynamic parameter testing system. On the basis of technical testing, a discrete ANN model for quality prediction and evaluation of spot welding is built. The results show that the reflection from input vector space to output vector space could be realized by discrete processing the input and putput parameter of prediction model, such as welding current,voltage between electrodes and shearing strength. The prediction model has good ability of reliability and fault-tolerance. It is adapted to predict and evaluate weld quality for DC spot welding of aluminum,and can be used to realize the intelligent manufacture of resistance spot welding.
  • Related Articles

    [1]AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
    [2]WANG Jun, LI Fang, ZHANG Yuelong, HUA Xueming, SHEN Chen. Effect of Si content in welding wire on crack sensitivity of aluminum alloy joints and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 55-60. DOI: 10.12073/j.hjxb.20190827001
    [3]YAN Chunyan, YUAN Yuan, ZHANG Kezhao, WU Lichao, WANG Baosen. Investigation on cold cracking susceptibility of X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 41-46. DOI: 10.12073/j.hjxb.2019400310
    [4]RUAN Ye, SU Jinlong, QIAO Jianyi, QIU Xiaoming, XING Fei. Effect of humidity on crack sensitivity of aluminum alloy weld joint and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 89-93. DOI: 10.12073/j.hjxb.2019400018
    [5]YAO Qianyu, DENG Caiyan, GONG Baoming, WANG Dongpo. The sensitivity analysis of parameters involved in engineering critical assessment for the submarine pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 41-44.
    [6]ZHANG Qunbing, NIU Jing, ZHAO Pengfei, HUANG Yong, LI Zhigang, ZHANG Jianxun. Influence of preheating temperature on cold cracking sensitivity of 12Cr10Co3W2Mo heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 87-91.
    [7]LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of peak temperature and cooling rate in welding thermal cycle on microstructure and properties of CGHAZ inSA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 13-17.
    [8]ZHANG Yuanjie, PENG Yun, MA Chengyong, PENG Xinna, TIAN Zhiling, LU Jiansheng. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 53-56.
    [9]LAN Liangyun, QIU Chunlin, ZHAO Dewen, GAO Xiuhua. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 41-44.
    [10]DU Yi, ZHANG Tian-hong, ZHANG Jun-xu. Analysis on welding cold crack sensibility of 10Ni8CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 93-96.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return