Citation: | LIU Yaliang1,2, SUN Yibo1,2, ZOU Li1,2, YANG Xinhua1,2. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 67-72. DOI: 10.12073/j.hjxb.2018390098 |
Hobbacher A F. Recommendations for fatigue design of welded components[M]. Cambridge: Abington Publishing, 1996.[2] Bergan P G, Losberg I. Fatigue capacity of FPSO structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2006, 128(2): 156-161.[3] Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876.[4] The British Standards Institution. Fatigue design and assessment of steel structures: BS7608-1993[S]. London: British Standard Institute, 1999.[5] The International Institute of Welding. Stress determination for fatigue analysis welded components: IIS/IIW-1221-93[S]. Cambridge: Abington Publication, 1995.[6] Niemi E J. On the determination of hot spot stresses in the vicinity of edge grussets[M]. Paris: International Institute of Welding, 1994.[7] 罗 怡, 伍光凤, 李春天. Choi-Williams时频分布在CO2焊接电信号检测中的应用[J]. 焊接学报, 2008, 29(2): 101-103.Luo Yi, Wu Guangfeng, Li Chuntian. Application of Choi-Williams distribution to electrical signals detection in CO2 arc welding[J]. Transactions of the China Welding Institution, 2008, 29(2): 101-103.[8] 黄宝山, 何宽芳, 肖冬明. 基于LMD能谱熵的方波交流埋弧焊参数优选[J]. 焊接技术, 2014, 43(10): 29-33.Huang Baoshan, He Kuanfang, Xiao Dongming. Parameters optimal selection of square wave submerged arc welding based on LMD energy spectrum entropy[J]. Welding Technology, 2014, 43(10): 29-33.[9] 邢海燕, 葛 桦, 韩亚潼, 等. 基于熵带与DS理论的焊缝等级磁记忆量化评价[J]. 仪器仪表学报, 2016, 37(3): 610-616.Xing Haiyan, Ge Hua, Han Yatong, et al. Quantitative MMM evaluation of weld levels based on information entropy and DS evidence theory[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 610-616.[10] 杨鑫华, 孙屹博, 邹 丽. 网格不敏感结构应力的焊接疲劳数据分布[J]. 焊接学报, 2015, 36(2): 11-15.Yang Xinhua, Sun Yibo, Zou Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. Transactions of the China Welding Institution, 2015, 36(2): 11-15.[11] ASME Post Construction Committee. Fitness for Service, the ASME B & PV Code, Section VIII, Division 2: API 579-1/ASME FFS-1[S]. New York: American Society of Mechanical Engineers, 2007.[12] 张继国, (美)辛格. 信息熵: 理论与应用[M]. 北京: 中国水利水电出版社, 2012.[13] Sidhom N, Laamouri A, Fathallah R, et al. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach[J]. International Journal of Fatigue, 2005, 27(7): 729-745..[14] Beretta S, Sala G. A model for fatigue strength of welded lap joints[J]. Fatigue and Fracture Engineering Materials and Structures, 2005, 28(1-2): 257-264.[15] Da Cruz J A M P, Costa J D M, Borrego L F P, et al. Fatigue life prediction in AlMgSi1 lap joint weldments[J]. International Journal of Fatigue, 2000, 22(7): 601-610.[16] Gurney T R. Influence of artificially induced residual stresses on the fatigue strength of welded light alloy specimens[J]. British Welding Journal, 1962(9): 90-95.
|
[1] | WEI Guoqian, GUO Zixian, YAN Mengyu, ZHAO Gang. Pavlou approach based fatigue life prediction for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 16-23. DOI: 10.12073/j.hjxb.20221201001 |
[2] | LI Chengkun, DONG Zhibo, WANG Han, HAN Fang, TENG Junfei, LV Yanlong. Research on service life prediction of closely spaced array hole column laminated cooling structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 101-106. DOI: 10.12073/j.hjxb.20220707003 |
[3] | BAI Yanan, DENG Caiyan, GONG Baoming, WANG Sheng. Study on fatigue property of welded steel structure of tanker based on hot spot stress approach[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 90-94. DOI: 10.12073/j.hjxb.2019400106 |
[4] | WEI Guoqian, YUE Xudong, DANG Zhang, HE Yibin. S-N and IEFM combined fatigue life analysis for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 23-27. |
[5] | WANG Xiaoguang, YU Huiping, LI Xiaoyang, CHEN Shujun. Fatigue test analysis of ultra-high strength steel spot welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 99-102,110. |
[6] | DONG Yafei, WEI Guoqian, YUE Xudong, YU Zhen. Fatigue life analysis of welded girders with trapezoidal corrugated webs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 79-82. |
[7] | YANG Xinhua, SUN Yibo, ZOU Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 11-14. |
[8] | ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108. |
[9] | SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108. |
[10] | DING Yanchuang, ZHAO Wenzhong. Stiffness coordination strategy for increasing fatigue life and its application in welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 31-34. |
1. |
盛春明. 基于TRIBON的焊接信息管理系统开发. 船舶物资与市场. 2023(03): 90-92 .
![]() | |
2. |
贾卜宇,戴一康,王俊超,朱力捷. 基于熵理论的多媒体视频制作节点研究. 电子质量. 2021(02): 44-49 .
![]() | |
3. |
邹丽,任思远,杨光,杨鑫华. 基于改进条件邻域熵的接头疲劳寿命影响因素分析. 焊接学报. 2021(11): 43-50+99-100 .
![]() | |
4. |
孙杨,刘亚良,李赫,杨鑫华,许鸿吉. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定. 焊接学报. 2020(01): 61-66+100 .
![]() | |
5. |
单龙,付雷,孙进,卢长煜,方洪渊. 铝合金风机叶轮焊接结构强度校核方法分析. 焊接. 2020(03): 5-9+65 .
![]() | |
6. |
黄嘉煜,任雯菁,黄勇. 基于信息熵的高新关键技术方案决策模型研究. 软件导刊. 2020(08): 105-108 .
![]() | |
7. |
杨鑫华,贾昕,朱平,李赫. 基于信息增益率的点焊接头疲劳性能影响因素分析. 焊接学报. 2020(10): 73-78+101-102 .
![]() |