Advanced Search
LIU Yaliang1,2, SUN Yibo1,2, ZOU Li1,2, YANG Xinhua1,2. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 67-72. DOI: 10.12073/j.hjxb.2018390098
Citation: LIU Yaliang1,2, SUN Yibo1,2, ZOU Li1,2, YANG Xinhua1,2. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 67-72. DOI: 10.12073/j.hjxb.2018390098

Fatigue life analysis method of aluminum alloy welded joints based on information entropy

More Information
  • Received Date: October 12, 2016
  • An analysis model of aluminum alloy welded joints fatigue data based on information entropy is proposed in this paper. Through calculating and analyzing the information entropy of decision attributes, quantitative contribution of stress concentration, plate thickness and loading mode to the fatigue destruction are researched. The results show that the total information entropy of the fatigue data based on three stress types are respectively 0.997 7, 0.910 0 and 0.817 9. There is consistency between the reducing trend of the weighted information entropy and the declining standard deviation of the S-N curves. In the S-N curve based on the structure stress, the weighted information entropy of membrane stress concentration factor (SCFm) is 0.675 4, which plays a major role in the distribution of fatigue data. In the S-N curve based on the equivalent structure stress, the weighted information entropy of stress ratio is 0.622 3, which indicates that stress ratio is an important factor that influences the distribution of fatigue data.
  • Hobbacher A F. Recommendations for fatigue design of welded components[M]. Cambridge: Abington Publishing, 1996.[2] Bergan P G, Losberg I. Fatigue capacity of FPSO structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2006, 128(2): 156-161.[3] Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876.[4] The British Standards Institution. Fatigue design and assessment of steel structures: BS7608-1993[S]. London: British Standard Institute, 1999.[5] The International Institute of Welding. Stress determination for fatigue analysis welded components: IIS/IIW-1221-93[S]. Cambridge: Abington Publication, 1995.[6] Niemi E J. On the determination of hot spot stresses in the vicinity of edge grussets[M]. Paris: International Institute of Welding, 1994.[7] 罗 怡, 伍光凤, 李春天. Choi-Williams时频分布在CO2焊接电信号检测中的应用[J]. 焊接学报, 2008, 29(2): 101-103.Luo Yi, Wu Guangfeng, Li Chuntian. Application of Choi-Williams distribution to electrical signals detection in CO2 arc welding[J]. Transactions of the China Welding Institution, 2008, 29(2): 101-103.[8] 黄宝山, 何宽芳, 肖冬明. 基于LMD能谱熵的方波交流埋弧焊参数优选[J]. 焊接技术, 2014, 43(10): 29-33.Huang Baoshan, He Kuanfang, Xiao Dongming. Parameters optimal selection of square wave submerged arc welding based on LMD energy spectrum entropy[J]. Welding Technology, 2014, 43(10): 29-33.[9] 邢海燕, 葛 桦, 韩亚潼, 等. 基于熵带与DS理论的焊缝等级磁记忆量化评价[J]. 仪器仪表学报, 2016, 37(3): 610-616.Xing Haiyan, Ge Hua, Han Yatong, et al. Quantitative MMM evaluation of weld levels based on information entropy and DS evidence theory[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 610-616.[10] 杨鑫华, 孙屹博, 邹 丽. 网格不敏感结构应力的焊接疲劳数据分布[J]. 焊接学报, 2015, 36(2): 11-15.Yang Xinhua, Sun Yibo, Zou Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. Transactions of the China Welding Institution, 2015, 36(2): 11-15.[11] ASME Post Construction Committee. Fitness for Service, the ASME B & PV Code, Section VIII, Division 2: API 579-1/ASME FFS-1[S]. New York: American Society of Mechanical Engineers, 2007.[12] 张继国, (美)辛格. 信息熵: 理论与应用[M]. 北京: 中国水利水电出版社, 2012.[13] Sidhom N, Laamouri A, Fathallah R, et al. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach[J]. International Journal of Fatigue, 2005, 27(7): 729-745..[14] Beretta S, Sala G. A model for fatigue strength of welded lap joints[J]. Fatigue and Fracture Engineering Materials and Structures, 2005, 28(1-2): 257-264.[15] Da Cruz J A M P, Costa J D M, Borrego L F P, et al. Fatigue life prediction in AlMgSi1 lap joint weldments[J]. International Journal of Fatigue, 2000, 22(7): 601-610.[16] Gurney T R. Influence of artificially induced residual stresses on the fatigue strength of welded light alloy specimens[J]. British Welding Journal, 1962(9): 90-95.
  • Related Articles

    [1]WEI Guoqian, GUO Zixian, YAN Mengyu, ZHAO Gang. Pavlou approach based fatigue life prediction for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 16-23. DOI: 10.12073/j.hjxb.20221201001
    [2]LI Chengkun, DONG Zhibo, WANG Han, HAN Fang, TENG Junfei, LV Yanlong. Research on service life prediction of closely spaced array hole column laminated cooling structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 101-106. DOI: 10.12073/j.hjxb.20220707003
    [3]BAI Yanan, DENG Caiyan, GONG Baoming, WANG Sheng. Study on fatigue property of welded steel structure of tanker based on hot spot stress approach[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 90-94. DOI: 10.12073/j.hjxb.2019400106
    [4]WEI Guoqian, YUE Xudong, DANG Zhang, HE Yibin. S-N and IEFM combined fatigue life analysis for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 23-27.
    [5]WANG Xiaoguang, YU Huiping, LI Xiaoyang, CHEN Shujun. Fatigue test analysis of ultra-high strength steel spot welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 99-102,110.
    [6]DONG Yafei, WEI Guoqian, YUE Xudong, YU Zhen. Fatigue life analysis of welded girders with trapezoidal corrugated webs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 79-82.
    [7]YANG Xinhua, SUN Yibo, ZOU Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 11-14.
    [8]ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108.
    [9]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [10]DING Yanchuang, ZHAO Wenzhong. Stiffness coordination strategy for increasing fatigue life and its application in welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 31-34.
  • Cited by

    Periodical cited type(7)

    1. 盛春明. 基于TRIBON的焊接信息管理系统开发. 船舶物资与市场. 2023(03): 90-92 .
    2. 贾卜宇,戴一康,王俊超,朱力捷. 基于熵理论的多媒体视频制作节点研究. 电子质量. 2021(02): 44-49 .
    3. 邹丽,任思远,杨光,杨鑫华. 基于改进条件邻域熵的接头疲劳寿命影响因素分析. 焊接学报. 2021(11): 43-50+99-100 . 本站查看
    4. 孙杨,刘亚良,李赫,杨鑫华,许鸿吉. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定. 焊接学报. 2020(01): 61-66+100 . 本站查看
    5. 单龙,付雷,孙进,卢长煜,方洪渊. 铝合金风机叶轮焊接结构强度校核方法分析. 焊接. 2020(03): 5-9+65 .
    6. 黄嘉煜,任雯菁,黄勇. 基于信息熵的高新关键技术方案决策模型研究. 软件导刊. 2020(08): 105-108 .
    7. 杨鑫华,贾昕,朱平,李赫. 基于信息增益率的点焊接头疲劳性能影响因素分析. 焊接学报. 2020(10): 73-78+101-102 . 本站查看

    Other cited types(5)

Catalog

    Article views (863) PDF downloads (3) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return