Citation: | DING Hao1, BAO Yumei1, CHAI Guozhong1, YANG Jianguo1,2. Study on interfacial properties and crack deflection of the T2 copper-45 steel bimaterial[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 17-22. DOI: 10.12073/j.hjxb.2018390087 |
Kar J, Roy S K, Roy G G. Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel[J]. Journal of Materials Processing Technology, 2016, 233: 174-185.[2] Wei P S, Chung F K. Unsteadymarangoni flow in a molten pool when welding dissimilar metals[J]. Metallurgical and Materials Transactions B, 2000, 31(6):1387-1403.[3] Blouin A, Chapuliot S, Marie S, et al. Brittle fracture analysis of dissimilar metal welds[J]. Engineering Fracture Mechanics, 2014, 131: 58-73.[4] Gilles P, Brosse A, Pignol M. Simulation of ductile tearing in a dissimilar material weld up to pipe wall break-through[C]∥ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, American Society of Mechanical Engineers, 2010: 509-517.[5] Samal M K, Seidenfuss M, Roos E, et al. Investigation of failure behavior of ferritic-austenitic type of dissimilar steel welded joints[J]. Engineering Failure Analysis, 2011, 18(3): 999-1008.[6] Faidy C. Structural integrity of bi-metallic welds in piping fracture testing and analysis[C]∥ASME 2008 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2008: 191-200.[7] Nicak T, Schendzielorz H, Keim E, et al. STYLE: Study on transferability of fracture material properties from small scale specimens to a real component[C]∥ASME 2011 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2011: 313-322.[8] Motamedi D, Mohammadi S. Dynamic crack propagation analysis of orthotropic media by the extended finite element method[J]. International Journal of Fracture, 2010, 161(1): 21-39.[9] Turichin G A, Klimova O G, Babkin K D, et al. Effect of thermal and diffusion processes on formation of the structure of weld metal in laser welding of dissimilar materials[J]. Metal Science and Heat Treatment, 2014, 55(9-10): 569-574.[10] 唐振云, 马英杰, 毛智勇, 等. TC4-DT电子束焊接头显微组织及疲劳裂纹扩展行为[J]. 焊接学报, 2012, 33(9): 109-112.Tang Zhenyun, Ma Yingjie, Mao Zhiyong, et al. Microstructure and fatigue crack growth behavior of electron beam welded joints for TC4-DT titanium alloy[J]. Transactions of the China Welding Institution, 2012, 33(9): 109-112.[11] 赵 健. 电子束填丝焊接熔化过渡行为及铜/钢焊接研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[1] | WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001 |
[2] | LI Hong-wei, HE Chang-hong, PENG Yun, TIAN Zhi-ling, LIU Rong-pei, CHEN Yan-qing. High toughness submerged arc welding wire of ship steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 96-100. |
[3] | Lu Delin, Li Yanwen, Li Xianjun, Chen Junyi, Zhang Ruibin, Zheng Kui. Effect of lath martensite on toughness in overheated zone of 10Ni5CrMoV and 12Ni2CrMoVA steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (2): 114-120. |
[4] | Yan Cheng, Chen Jianhong, Luo Yongchun. Microstructures and toughness of local brittle zone of HSLA steel multipass weld metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 21-25. |
[5] | Wang Yirong, Che Xiaoli. Effect of stress relief tempering on HAZ toughness in HSLA steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 149-154. |
[6] | Yang Yongxing, He Huaixing. THE HELPFUL EFFECT OF ANGLE RESTRAINT ON WELDING HAZ TOUGHNESS IN 15MnMoVNREs STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (1): 36-42. |
[7] | Wang Zhihui, Xu Biyu, Ye Ciqi. A STUDY OF THE FRACTURE TOUGHNESS OF THE MARTENSITE LAYER IN AUSTENITIC-FERRITIC DISSIMILAR METAL JOINTS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 95-103. |
[8] | Xiong Jialin, Lan Qiang, Wang Aiquen. THE EFFECT OF THERMAL PRESTRAIN ON FRACTURE TOUGHNESS OF HAZ OF WT-62CF LOW ALLOY HIGH STRENGTH STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (1): 55-64. |
[9] | Cao Jinmao, Tang Bogang, Wang Shiliang, Zhang Zaifan. A NEW FUSED FLUX FOR LOW HYDROGEN HIGH TOUGHNESS WELDS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (1): 1-12. |
[10] | Yang Yongxing, Cheng Guangxu. A STUDY OF THE TOUGHNESS OF WELDING FUSION REGION FOR DISSIMILAR METALLIC MATERIALS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (4): 255-262. |
1. |
郭顺,王朋坤,顾介仁,彭勇,徐俊强,周琦. 电弧熔炼Ti6Al4V/B_4C复合材料微观组织与力学性能. 机械制造文摘(焊接分册). 2023(06): 19-26 .
![]() | |
2. |
郭顺,王朋坤,顾介仁,彭勇,徐俊强,周琦. 电弧熔炼Ti6Al4V/B_4C复合材料微观组织与力学性能. 焊接学报. 2022(09): 62-68+117 .
![]() | |
3. |
杨姣,付永红,杨蕾,李鑫. 碳化钒陶瓷增强铁基表面复合层的组织和力学表征. 热加工工艺. 2021(18): 88-90+94 .
![]() | |
4. |
刘丹丹,樊自拴. 超高温陶瓷涂层的研究进展. 材料保护. 2020(05): 105-110 .
![]() |