Citation: | ZHANG Zhiqiang, JING Hongyang, XU Lianyong, HAN Yongdian. Microstructure characterization of duplex stainless steel multi-pass welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 79-82. DOI: 10.12073/j.hjxb.20170517 |
金晓军. 双相不锈钢管道焊接质量控制和安全评定的研究[D]. 天津: 天津大学, 2004.
|
包晔峰, 胡网勤, 蒋永锋, 等. 2205双相不锈钢焊接接头微区耐点蚀性能分析[J]. 焊接学报, 2011, 32(11): 81-84. Bao Yefeng, Hu Wangqin, Jiang Yongfeng, et al. Study on micro region pitting resistance of welded joint of 2205 duplex stainless steel[J]. Transactions of the China Welding, 2011, 32(11): 81-84.
|
Kim S, Jang S, Lee I, et al. Effects of solution heat-treatment and nitrogen in shielding gas on the resistance to pitting corrosion of hyper duplex stainless steel welds[J]. Corrosion Science, 2011, 53(5): 1939-1947.
|
Pohl M, Storz O, Glogowski T. Effect of intermetallic precipitations on the properties of duplex stainless steel[J]. Materials Characterization, 2007, 58(1): 65-71.
|
Ramirez A J, Lippold J C, Brandi S D. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels[J]. Metallurgical and Materials Transactions A, 2003, 34(8): 1575-97.
|
Chehuan T, Dreilich V, de Assis K S, et al. Influence of multipass pulsed gas metal arc welding on corrosion behaviour of a duplex stainless steel[J]. Corrosion Science, 2014, 86: 268-274.
|
Zhang Z Q, Jing H Y, Xu L Y, et al. Investigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods[J]. Materials and Design, 2016, 109: 670-685.
|
Garzón C M, Ramirez A J. Growth kinetics of secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel[J]. Acta Materialia, 2006, 54(12): 3321-3331.
|
[1] | WEI Wei, MA Minze, ZHANG He, ZHAO Xingming, YANG Xinhua. Construction of the S-N curve evaluation model based on entropy for welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240909002 |
[2] | HU Xin, LI Yanqing, HUANG Jinhao. Discussion on fatigue evaluation models of steel welded joints treated by HFMI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 80-86. DOI: 10.12073/j.hjxb.20210703003 |
[3] | WEI Wei, ZHANG Yuntong, LIU Ke, JIA Xia, YANG Xinhua. Rapid high-cycle fatigue performance evaluation of laser-butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 48-53. DOI: 10.12073/j.hjxb.20210607001 |
[4] | WEI Wei, SUN Yibo, YANG Guang, SUN Yang, YANG Xinhua. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 49-55. DOI: 10.12073/j.hjxb.20200907001 |
[5] | DU Yongpeng, GUO Ning, WU Chenghao, HUANG Lu, ZHANG Xin, FENG Jicai. Study on the application of the weld reinforcement variation coefficient in underwater wet welding quality evaluation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 24-27, 32. DOI: 10.12073/j.hjxb.20190917001 |
[6] | CHANG Junjie, LI Yuanyuan, HU Chen, Wu Ruifeng. Quality evaluation of laser welds based on air-coupled ultrasound[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 60-66. DOI: 10.12073/j.hjxb.2019400264 |
[7] | LI Xiangwei, ZHAO Wenzhong, ZHENG Chengde. Weld fatigue life assessment based on fuzzy quality evaluation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 49-52. |
[8] | ZHANG Hongjie, HOU Yanyan. Quality evaluation of the resistance spot welding based on PCASVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 97-100. |
[9] | LUO Xian-xing, DENG Li-peng, ZHANG Chen-shu, JI Chun-tao. Evaluation of nugget size and characteristics of influencing factors in resistance spot welding of aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 37-43. |
[10] | CHU Jian-ying, CHEN Li-gong, NI Chun-zhen. Comparison of several methods for evaluating effectiveness of vibration stress relief process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 57-60. |