Citation: | HU Xin, LI Yanqing, HUANG Jinhao. Discussion on fatigue evaluation models of steel welded joints treated by HFMI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 80-86. DOI: 10.12073/j.hjxb.20210703003 |
周张义, 王雨舟, 杨欣. 基于不同应力法的焊接构架纵向角接头疲劳累积损伤评估[J]. 焊接学报, 2018, 39(8): 18 − 22.
Zhou Zhangyi, Wang Yuzhou, Yang Xin. Fatigue cumulative damage assessment of longitudinal fillet welded gusset in welded frame based on different stress approaches[J]. Transactions of the China Welding Institution, 2018, 39(8): 18 − 22.
|
刘刚, 黄如旭, 黄一. 复杂焊接接头多轴疲劳强度评估的等效热点应力法[J]. 焊接学报, 2012, 33(6): 10 − 14.
Liu Gang, Huang Ruxu, Huang Yi. Equivalent hot spot stress approach for multiaxial fatigue strength assessment of complex welded joints[J]. Transactions of the China Welding Institution, 2012, 33(6): 10 − 14.
|
王东坡, 曹舒, 邓彩艳. 基于缺口应力法的场桥导轨焊接结构疲劳性能评估[J]. 焊接学报, 2016, 37(4): 5 − 8.
Wang Dongpo, Cao Shu, Deng Caiyan. Notch stess concepts for fatigue assessment of welded portal crane rail structure[J]. Transactions of the China Welding Institution, 2016, 37(4): 5 − 8.
|
曾文杰, 胡振东, 高玉魁. 高频机械冲击处理的焊接接头疲劳强度评定[J]. 表面技术, 2018, 47(8): 42 − 50.
Zeng Wenjie, Hu Zhendong, Gao Yukui. Fatigue assessment of welded joints treated by high frequency mechanical impact[J]. Surface Technology, 2018, 47(8): 42 − 50.
|
Malaki M , Ding H. A review of ultrasonic peening treatment[J]. Materials & Design, 2015, 87(12): 1072 − 1086. doi: 10.1007/s00773-012-0172-3
|
Yildirim H C, Marquis G B. Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact[J]. International Journal of Fatigue, 2012, 44: 168 − 176. doi: 10.1016/j.ijfatigue.2012.05.002
|
Wang T, Wang D, Huo L, et al. Discussion on fatigue design of welded joints enhanced by ultrasonic peening treatment (UPT)[J]. International Journal of Fatigue, 2009, 31(4): 644 − 650.
|
Marquis G B, Mikkola E, Yildirim H C, et al. Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed fatigue assessment guidelines[J]. Welding in the World, 2013, 57(6): 803 − 822.
|
Radaj D, Lazzarin P, Berto F. Generalised Neuber concept of fictitious notch rounding[J]. International Journal of Fatigue, 2013, 51: 105 − 115.
|
Fricke W. Guideline for the fatigue assessment by notch stress analysis for welded structures[C]//Annual Assembly of International Institute of Welding. Paris, France, 2008: 1 − 133.
|
Wang Dongpo, Huo Lixing, Wang Ting, et al. Effect of mean stress on fatigue performance of welded joints treated by UPT[J]. Chinese Journal of Mechanical Engineering, 2004, 17(4): 531 − 533. doi: 10.3901/CJME.2004.04.531
|
Deguchi T, Mouri M, Junya Hara, et al. Fatigue strength improvement for ship structures by ultrasonic peening[J]. Journal of Marine Science and Technology, 2012, 17(3): 360 − 369.
|
Okawa T, Shimanuki H, Funatsu Y, et al. Effect of preload and stress ratio on fatigue strength of welded joints improved by ultrasonic impact treatment[J]. Welding in the World, 2013, 57(2): 235 − 241. doi: 10.1007/s40194-012-0018-y
|
Ummenhofer T , Weich I. REFRESH – lebensdauerver längerung bestehender und neuer geschwei ß ter Stahlkonstruktionen[J]. Stahlbau, 2010, 75(7): 605 − 607.
|
Shimanuki H, Okawa T. Effect of stress ratio on the enhancement of fatigue strength in high performance steel welded joints by ultrasonic impact treatment[J]. International Journal of Steel Structures, 2013, 13(1): 155 − 161. doi: 10.1007/s13296-013-1014-9
|
[1] | TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002 |
[2] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[3] | LI Ping, LI Hanlin, WEN Weishu, XUE Kemin. Mechanical properties of vacuum diffusion welded joints of low activation martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 21-24. DOI: 10.12073/j.hjxb.2019400065 |
[4] | XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54. |
[5] | WU Wei, CHENG Guangfu, GAO Hongming, WU Lin. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 81-84. |
[6] | LI Hongmei, SUN Daqian, WANG Wenquan, XUAN Zhaozhi, REN Zhenan. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 71-74. |
[7] | WANG Zhicheng, QIAO Jisen, CHEN Jianhong, ZHU Liang. Investigation on the local mechanical properties of the automobile aluminium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 21-24. |
[8] | DONG Junhui, ZHANG Yanfei, TANG Zhengkui. Prediction of mechanical properties of welded joint using fuzzy neural network technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 29-33. |
[9] | SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108. |
[10] | ZHANG Yanfei, DONG Junhui, ZHANG Yongzhi. Prediction mechanical properties of welded joints based on ANFIS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 5-8. |