Advanced Search
WEI Wei, SUN Yibo, YANG Guang, SUN Yang, YANG Xinhua. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 49-55. DOI: 10.12073/j.hjxb.20200907001
Citation: WEI Wei, SUN Yibo, YANG Guang, SUN Yang, YANG Xinhua. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 49-55. DOI: 10.12073/j.hjxb.20200907001

Fatigue strength evaluation of Q460 weld joints based on energy dissipation

More Information
  • Received Date: September 06, 2020
  • Available Online: March 28, 2021
  • Traditional temperature-based fatigue strength prediction method, fail to reveal the irreversible energy dissipation behind the fatigue evolution. For the fatigue strength evaluation of Q460 welded joints, a new fatigue strength prediction method, which is based on the energy dissipation of different load levels that exists the turning point, was proposed, i.e. maximum slope method. The energy dissipation was firstly established based on the obtained real-time thermographic data of the specimen surface, and then the energy dissipation value of Q460 welded joints were calculated. Based on the theory of the energy dissipation turning point exists when the load level increases, the energy dissipation was set as an index for rapid fatigue strength estimation. To verify the accuracy of the developed model, the fatigue strength value estimated by the maximum slope method was compared with the predicted value by the traditional bi-linear and staircase methods. The results show that a good agreement is reached between the predicted fatigue strength by the maximum slope method and the traditional bi-linear and staircase methods, and the errors are 0.04% and 4.76%, respectively, which may provide a certain reference for fatigue strength prediction of welded joints.
  • Zhang L, Liu X, Wu S H, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54(9): 1 − 6.
    Jacobsen T K, Srensen B F, Brndsted P. Measurement of uniform and localized heat dissipation induced by cyclic loading[J]. Experimental Mechanics, 1998, 38(4): 289 − 294. doi: 10.1007/BF02410391
    杨鑫华, 孙屹博, 邹丽. 网格不敏感结构应力的焊接疲劳数据分布[J]. 焊接学报, 2015, 36(2): 11 − 14.

    Yang Xinhua, Sun Yibo, Zou Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. Transactions of the China Welding Institution, 2015, 36(2): 11 − 14.
    Wei G Q, Ochbileg O, Xu D Y, et al. Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures[J]. China Welding, 2019, 28(4): 39 − 45.
    Fan J L, Guo X L, Wu C W. A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue, 2012, 44: 1 − 7. doi: 10.1016/j.ijfatigue.2012.06.003
    樊俊铃, 郭杏林, 赵延广, 等. 定量热像法预测焊接接头的S-N曲线和残余寿命[J]. 材料工程, 2011(12): 29 − 33. doi: 10.3969/j.issn.1001-4381.2011.12.007

    Fan Junling, Guo Xinling, Zhao Yanguang, et al. Predictions of S-N curve and residual life of welded joints by quantitative thermographic method[J]. Journal of Materials Engineering, 2011(12): 29 − 33. doi: 10.3969/j.issn.1001-4381.2011.12.007
    Liu Y L, Sun Y B, Sun Y, et al. Rapid fatigue life prediction for spot-welded joint of SUS301 L-DLT stainless steel and Q235B carbon steel based on energy dissipation[J]. Advances in Mechanical Engineering, 2018, 10(11): 1 − 11.
    孙杨, 刘亚良, 李赫, 等. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定[J]. 焊接学报, 2020, 41(1): 61 − 66.

    Sun Yang, Liu Yaliang, Li He, et al. Rapid fatigue limit prediction of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. Transactions of the China Welding Institution, 2020, 41(1): 61 − 66.
    Fargione G, Geraci A, Rosa G L, et al. Rapid determination of the fatigue curve by the thermographic method[J]. International Journal of Fatigue, 2002, 24(1): 11 − 19. doi: 10.1016/S0142-1123(01)00107-4
    Luong M, Van K D. Metal fatigue limit evaluation using infrared thermography[C]//Proceedings of Workshop Advanced Infrared Technology and Applications. Capri (Italy), 1994: 245−253.
    Luong M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28(1): 155 − 163.
    Yang W P, Guo X L, Guo Q, et al. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology[J]. International Journal of Fatigue, 2019, 124: 461 − 472.
    Fan J L, Guo X L, Wu C W, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering: A, 2011, 528(29): 8417 − 8427.
    刘亚良. 基于疲劳损伤熵的点焊接头累积损伤评估方法研究[D]. 大连: 大连交通大学, 2018.

    Liu Yaliang. Research on curnulative damage assessment method of spot welded joint based on fatigue damage entropr[D]. Dalian: Dalian Jiaotong University, 2018.
    Guo Q, Guo X L, Fan J L, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation[J]. International Journal of Fatigue, 2015, 80(11): 136 − 144.
    Guo Q, Guo X L. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation[J]. Materials & Design, 2016, 90: 248 − 255.
    郭强, 郭杏林, 樊俊铃, 等. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51(4): 18 − 24.

    Guo Qiang, Guo Xinling, Fan Junling, et al. Research on high-cycle fatigue behavior of FV520B steel based on intrinsic dissipation[J]. Acta Metallurgica Sinica, 2015, 51(4): 18 − 24.
    Wei W, Li C, Sun Y, et al. Investigation of the self-heating of Q460 butt joints and an S-N curve modeling method based on infrared thermographic data for high-cycle fatigue[J]. Metals, 2021, 11(2): 232.
    Yang W P, Guo X L, Guo Q. A high-cycle fatigue energy dissipation accurate estimation method considering natural convection and radiation heat transfer[J]. International Journal of Fatigue, 2020, 138: 105717. doi: 10.1016/j.ijfatigue.2020.105717
    Huang J, Pastor M L, Garnier C, et al. Rapid evaluation of fatigue limit on thermographic data analysis[J]. International Journal of Fatigue, 2017, 104: 293 − 301. doi: 10.1016/j.ijfatigue.2017.07.029
    Rosa G L, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22(1): 65 − 73. doi: 10.1016/S0142-1123(99)00088-2
    Montesano J, Fawaz Z, Bougherara H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite[J]. Composite Structures, 2013, 97(5): 76 − 83.
    Fan J L, Zhao Y G, Guo X L, et al. A unifying energy approach for high-cycle fatigue behavior evaluation[J]. Mechanics of Materials, 2018, 120(5): 15 − 25.
    樊俊铃. 基于能量耗散的Q235钢高周疲劳性能评估[J]. 机械工程学报, 2018, 54(6): 1 − 9.

    Fan Junling. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Journal of Mechanical Engineering, 2018, 54(6): 1 − 9.
    Holman J P. Heat transfer[M]. New York: McGraw-Hill, 2010.
  • Related Articles

    [1]YANG Yule, DAI Yanfeng, GUO Meng, YANG Chao, PENG Weikang. Microstructure and mechanical properties of ultra-high strength AerMet 100 Steel formed by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 137-144. DOI: 10.12073/j.hjxb.20231219002
    [2]XIE Yujiang, YANG Yule, CHI Changtai. Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 19-24. DOI: 10.12073/j.hjxb.20190905001
    [3]WANG Bo, LIU Han, XUE Songbai, LI Yang, LOU Jiyuan, LOU Yinbin. Effect of rare earth Ce on microstructure and properties of Zn-22Al filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 61-64.
    [4]ZHANG Man, WANG Pengfei, ZHANG Lincai, LIN Yuebin. Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 55-58.
    [5]SHEN Zhikang, YANG Xinqi, ZHANG Zhaohua, YIN Yuhuan. Analysis of microstructure and mechanical properties of refill friction stir spot welded aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 73-76.
    [6]ZHANG Shuai, XUE Songbai, YANG Jinlong, LOU Jiang, WANG Shuiqing. Effect of P element on microstructure and properties of Al-Si-Zn filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 103-107.
    [7]YANG Changyong, XU Jiuhua, DING Wenfeng, FU Yucan, CHEN Zhenzhen. Microstructure and mechanical property of Ag-Cu-Ti fillers added with rare earth lanthanum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 67-70,74.
    [8]ZHANG Weihua, QIU Xiaoming, CHEN Xiaowei, ZHAO Xihua, SUN Daqian, LI Yongqiang. Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 121-124.
    [9]HAN Xianpeng, XUE Songbai, Gu Liyong, GU Wenhua, ZHANG Xin. Effect of gallium on microstructure and mechanical properties of Ag-Cu-Zn filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 45-48.
    [10]SHI Yiping, XUE Songbai, WANG Jianxin, GU Liyong, GU Wenhua. Effects of Ce on spreadability of Sn-Cu-Ni lead-free solder and mechanical properties of soldered joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 73-77.

Catalog

    Article views (473) PDF downloads (30) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return