Advanced Search
YANG Guang, ZHOU Jiaping, QIN Lanyun, WANG Wei. Influence of separate area scanning on coupled thermo-mechanical field of laser repairing of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 63-68. DOI: 10.12073/j.hjxb.20170514
Citation: YANG Guang, ZHOU Jiaping, QIN Lanyun, WANG Wei. Influence of separate area scanning on coupled thermo-mechanical field of laser repairing of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 63-68. DOI: 10.12073/j.hjxb.20170514

Influence of separate area scanning on coupled thermo-mechanical field of laser repairing of titanium alloy

More Information
  • Received Date: June 12, 2015
  • In order to control the residual stress in the process of laser deposition repair and reduce the deformation of the substrate, a laser deposition parts thermal coupling field numerical simulation in the repair surface was established on the ANSYS parametric design programming language. Thermal cycle characteristics, distribution rule of temperature field and residual stress field was analyzed under sequential scan and subarea scan. The results showed that the thermal cycle of nodes was similar under different scanning patterns. And substrate heat accumulation decreased greatly by subarea scan, at the same time the temperature distribution is relatively uniform so as to improve the stress concentration in the substrate and reduce residual stress. In order to verify the result, laser deposition temperature field and residual stress were measured by infrared thermometer and indentation strain gauge, and the substrate material deformation curve was plotted. The results showed that numerical simulations was in good agreement with the experimental results.
  • He R J, Wang H M. Fatigue crack nucleation and growth behaviors of laser melting deposited Ti-6Al-2Zr-Mo-V[J]. Material Science and Engineering, 2010, 527(7-8): 1933-1937.
    钦兰云, 王 婷, 杨 光, 等. 激光沉积修复BT20合金的试验研究[J]. 红外与激光工程, 2014, 43(2): 1-6. Qin Lanyun, Wang Ting, Yang Guang, et al. Experimental study on laser deposition repair BT20 alloy component[J]. Infrared and Laser Engineering, 2014, 43(2): 1-6.
    李嘉宁, 巩水利, 李怀学, 等. TA15钛合金激光非晶-纳米晶增强镍基涂层的组织结构及耐磨性[J]. 焊接学报, 2014, 35(10): 57-60. Li Jianing, Gong Shuili, Li Huaixue, et al. Microstructure and wear resistance of laser amorphousnanocrystals reinforced Ni-based coating on TA15 titanium alloy[J]. Transactions of the China Welding Institution, 2014, 35(10): 57-60.
    宋奎晶, 魏艳红, 马 瑞, 等. TA15钛合金焊接热影响区组织演变的数值模拟[J]. 焊接学报, 2014, 35(2): 28-32. Song Kuijing, Wei Yanhong, Ma Rui, et al. Numerical simulation of β to α phase transformation in HAZ during welding of TA15 alloy[J]. Transactions of the China Welding Institution, 2014, 35(2): 28-32.
    杨 光, 王向明, 王 维, 等. 激光熔覆制备TiC颗粒增强涂层的组织和性能[J]. 红外与激光工程, 2014, 43(3): 795-799. Yang Guang, Wang Xiangming, Wang Wei, et al. Microstructure and property of laser cladding TiC reinforced composition coating[J]. Infrared and Laser Engineering, 2014, 43(3): 795-799.
    王华明, 张述泉, 王向明, 等. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光, 2010, 36(12): 3204-3209. Wang Huaming, Zhang Shuquan, Wang Xiangming, et al. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers, 2009, 36(12): 3204-3209.
    孟祥军, 刘秀波, 刘海青, 等. 钛合金表面激光熔覆高温自润滑耐磨复合涂层[J]. 焊接学报, 2015, 36(5): 59-64. Meng Xiangjun, Liu Xiubo, Liu Haiqing, et al. High temperature self-lubrication anti-wear composite coatings on titanium alloy by laser cladding[J]. Transactions of the China Welding Institution, 2015, 36(5): 59-64.
    Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science, 2003, 38(1): 35-49.
    Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single-and multi-track laser cladding by a high-power direct diode laser[J]. Optics & Laser Technology, 2014, 63(4): 154-168.
    Dai K, Shaw L. Thermal and stress modeling of multi-material laser processing[J]. Acta Materialia, 2001, 49(20): 4171-4181.
    Nickel A H, Barnett D M, Prinz F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science & Engineering A, 2001, 317(1-2): 59-64.
    孔 源, 刘伟军, 王越超, 等. 钛合金激光直接成形过程中热力耦合场的数值模拟[J]. 机械工程学报, 2011, 47(24): 74-82. Kong Yuan, Liu Weijun, Wang Yuechao, et al. Numerical simulation of temperature field and stress field of direct laser metal deposition shaping process of titanium alloys[J]. Journal of Mechanical Engineering, 2011, 47(24): 74-82.
    龙日升, 刘伟军, 卞宏友, 等. 扫描方式对激光金属沉积成形过程热应力的影响[J]. 机械工程学报, 2007, 43(11): 74-81. Long Risheng, Liu Weijun, Bian Hongyou, et al. Effects of scanning methods on thermal stress during laser metal deposition shaping[J]. Journal of Mechanical Engineering, 2007, 43(11): 74-81.
    薛 蕾, 陈 静, 林 鑫, 等. 激光快速修复Ti-6Al-4V合金的显微组织与力学性能[J]. 稀有金属材料与工程, 2007, 36(6): 989-993. Xue Lei, Chen Jing, Lin Xin, et al. Microstructures and mechanical properties of laser rapid repaired Ti-6Al-4V[J]. Rare Metal Materials and Engineering, 2007, 36(6): 989-993.
  • Related Articles

    [1]CONG Jiahui, GAO Jiayuan, ZHOU Song, WANG Jiahao, WANG Naijing, LIN Fangxu. Thermodynamic coupling numerical simulation and mechanical properties analysis of TC4 laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 77-88, 96. DOI: 10.12073/j.hjxb.20230315001
    [2]GE Yaqiong, LI Jipeng, CHANG Zexin, MA Mingfeng, HOU Qingling. Numerical simulation of laid powder based on selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 93-98. DOI: 10.12073/j.hjxb.20220212001
    [3]WU Xiangyang, SU Hao, SUN Yan, CHEN Ji, WU Chuanong. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 91-96. DOI: 10.12073/j.hjxb.20200708001
    [4]SUN Jiamin, CAI Jianpeng, YE Yanhong, Deng Dean. Numerical simulation of electro slag welding temperature field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 93-96.
    [5]FU Guansheng, ZHENG Moujin. Numerical simulation of pulsed laser welding temperature field for Al3003 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 83-86.
    [6]ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26.
    [7]ZHOU Mingzhi, LEI Danggang, LIANG Ning, YANG Jinghui. 3D coupled thermo-mechanical visco-plastic finite element simulation of friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 5-9.
    [8]YAN Dongyang, WU Aiping, JIAO Haojun, NING Liqing, ZHOU Liangang. Numerical simulation of residual stress and deformation on laser welding of "grooved-coat" structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 13-16.
    [9]LI Zhining, CHANG Baohua, DU Dong, WANG Li. Numerical simulation on temperature field in laser-plasma arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 29-33.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.

Catalog

    Article views (381) PDF downloads (232) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return