Advanced Search
WU Xiangyang, SU Hao, SUN Yan, CHEN Ji, WU Chuanong. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 91-96. DOI: 10.12073/j.hjxb.20200708001
Citation: WU Xiangyang, SU Hao, SUN Yan, CHEN Ji, WU Chuanong. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 91-96. DOI: 10.12073/j.hjxb.20200708001

Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process

More Information
  • Received Date: July 07, 2020
  • Available Online: January 26, 2021
  • From the viewpoint of macroscopic phenomena in heat transfer, a combined “double-ellipsoid + linearly-increased peak value cylinder” volumetric heat source distribution mode was proposed according to the characteristics of laser + GMAW hybrid heat source welding process. A finite element model of laser + GMAW hybrid heat source welding process was established. The temperature distribution, and the size of the weld cross-section were numerically calculated. It can be observed that the calculated results were in good agreement with the experimental results, which proves the rationality and applicability of the combined volumetric heat source model. And then, the calculated temperature field was utilized for the numerical modeling and comparison of the welding deformation and residual stress between GMAW and laser + GMAW hybrid welding process. The results shown that the heat input, weld width, welding deformation and high residual stress region of laser + GMAW hybrid welding were all much smaller than that of GMAW with the identical weld pool depth. The research confirmed the advantages of laser + GMAW hybrid welding, and provided basic theoretical data for the optimization of process parameters.
  • Steen W M, Eboo M. Arc augmented laser welding[J]. Metal Construction, 1979, 11(7): 332 − 335.
    Steen W M. Arc augmented laser processing of materials[J]. Applied Physics, 1980, 51(11): 5636 − 5641. doi: 10.1063/1.327560
    Dilthey U, Wieschemann A, Lueder F. Technical and economical advantages by synergies in laser arc hybrid welding[J]. Welding in the World, 1999, 43(4): 141 − 152.
    Shida T, Hirokawa M, Sato S. CO2 laser welding of aluminum alloys-welding of aluminum alloys using CO2 laser beam in combination with MIG arc[J]. Welding Research Abroad, 1997, 43(5): 36 − 41.
    Steen W M. Arc augmented laser welding-process variables, structure and properties[C]//The Joining of Metals, Spring Residential Conference, Coventry, 1981.
    Rejc J, Troyanova K, Iorio L, et al. Residual stresses prediction on clad pipeline girth welds through numerical simulation[J]. Procedia Manufacturing, 2019, 37: 605 − 612. doi: 10.1016/j.promfg.2019.12.095
    Lu Y, Zhu S, Zhao Z, et al. Numerical simulation of residual stresses in aluminum alloy welded joints[J]. Journal of Manufacturing Processes, 2020, 50: 380 − 393. doi: 10.1016/j.jmapro.2019.12.056
    逯世杰, 郑乔, 张超华, 等. 不同有限元软件对Q390钢厚板T型接头焊接残余应力和变形预测精度与计算效率的比较[J]. 机械工程学报, 2019, 55(6): 11 − 12. doi: 10.3901/JME.2019.06.011

    Lu Shijie, Zheng Qiao, Zhang Chaohua, et al. A comparative study on computational accuracy and efficiency of welding residual stresses and deformation in a Q390 steel thick plate T joint among three kinds of different FEM software[J]. Journal of Mechanical Engineering, 2019, 55(6): 11 − 12. doi: 10.3901/JME.2019.06.011
    Kong F, Ma J, Kovacevic R. Numerical and experimental study of thermally induced residual stress in the hybrid laser-GMA welding process[J]. Journal of Materials Processing Technology, 2011, 211(6): 1102 − 1111. doi: 10.1016/j.jmatprotec.2011.01.012
  • Related Articles

    [1]LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001
    [2]SONG Wei, MAN Zheng, XU Jie, WEI Shoupan, CUI Muchun, SHI Xiaojian, LIU Xuesong. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 20-26, 34. DOI: 10.12073/j.hjxb.20220629001
    [3]NAN Xujing, LIU Xiaoyan, CHEN Leida, ZHANG Tao. Effect of thermal cycling on reliability of solder joints of ceramic column grid array package[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 81-85. DOI: 10.12073/j.hjxb.20200331003
    [4]JIANG Nan, ZHANG Liang, LIU Zhiquan, XIONG Mingyue, LONG Weimin. Reliability analysis of thermal shock for SnAgCu solder joints of FCBGA devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 39-42. DOI: 10.12073/j.hjxb.2019400232
    [5]TIAN Ye. Study on reliability of micro-solder joints for flip chip assemblies under thermal shock-crack growth mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 43-45,50.
    [6]TIAN Ye. Micro-joint reliability of flip chip assembly under thermal shock-strain and stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 67-70.
    [7]ZENG Chao, WANG Chunqing, TIAN Yanhong, ZHANG Wei. Effect of hot-cutting defect on reliability of brazing process in ceramic package manufacturing——Ⅱ. Brazing structure design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 105-108.
    [8]GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96.
    [9]LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96.
    [10]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
  • Cited by

    Periodical cited type(1)

    1. 张璐霞, 林乃明, 邹娇娟, 谢瑞珍. 铝合金搅拌摩擦焊的研究现状. 热加工工艺. 2020(03): 1-6 .

    Other cited types(2)

Catalog

    Article views (654) PDF downloads (74) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return