Advanced Search
LI Zhining, CHANG Baohua, DU Dong, WANG Li. Numerical simulation on temperature field in laser-plasma arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 29-33.
Citation: LI Zhining, CHANG Baohua, DU Dong, WANG Li. Numerical simulation on temperature field in laser-plasma arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 29-33.

Numerical simulation on temperature field in laser-plasma arc hybrid welding

More Information
  • Received Date: July 09, 2006
  • A three dimensional heat transfer model was put forward for the laser-plasma arc hybrid welding, which combines the mathematical models of two heat sources.The model of laser welding is Gaussian volume heat source and its peak heat flux decreases with depth, and the model of plasma arc is Gaussian plane heat source. The influence, induced by reaction between laser beam and plasma arc, was mainly studied in the model.Based on the model, the temperature distribution of 2 mm 1420 Al-Li alloy plate was obtained by FEM computation for laser-plasma arc hybrid welding in different distances of two heat sources.The hybrid welding experiments were conducted and show that the simulation results are well agreed with the experimental results.The result proves that the heat transfer model is more close to physical reality.This paper is instructive to research on heat transfer and process about laser-plasma arc hybrid welding.
  • Related Articles

    [1]MA Jingping, CAO Rui, ZHOU Xin. Development on improving fatigue life of high strength steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 115-128. DOI: 10.12073/j.hjxb.20230711001
    [2]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [3]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [4]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [5]WU Liangchen, WANG Dongpo, DENG Caiyan, WANG Kang. Fatigue properties of welded joints of 16Mn steel in super long life region[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 117-120.
    [6]DING Yanchuang, ZHAO Wenzhong. Stiffness coordination strategy for increasing fatigue life and its application in welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 31-34.
    [7]Li Zhen, Zheng Xiulin. Prediction of Fatigue Life for Peened Butt Welds of 16Mn Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 151-158.
    [8]Lü Baotong, Zheng Xiulin. Fatigue life prediction for butt welds of 30CrMnSiNi2A steel containing welding delect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 241-247.
    [9]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.
    [10]Xing Guochen, Fang Dexin. INCREASING FATIGUE LIFE OF WELDED FRAME BOGIE FOR RAILWAY COACH[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 181-185.

Catalog

    Article views (204) PDF downloads (96) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return