Citation: | ZHOU Guangtao, KUANG Jingzhen, WEN Qiuling, CAI Zupeng, SU Liji. Microstructure and property of copper laser welding joint assisted by the surface pretreated by nanosecond laser direct writing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 21-29. DOI: 10.12073/j.hjxb.20220908002 |
Wei Guoqiang, Liu Henglin, Du Longchun, et al. Effect of electromigration and isothermal aging on interfacial microstructure and tensile fracture behavior of SAC305/Cu solder joint[J]. China Welding, 2016, 25(3): 42 − 48.
|
Keunhee L, Hyungson K. Enhancing coupling efficiency in laser keyhole welding of copper using femtosecond laser surface modification[J]. Optics & Laser Technology, 2021, 139: 106943.
|
Eric P, Florian Hugger, Robert D, et al. Comparison of different system technologies for continuous-wave laser beam welding of copper[J]. Procedia CIRP, 2020, 94: 587 − 591. doi: 10.1016/j.procir.2020.09.081
|
于汉臣, 闫涵, 栾天旻, 等. 紫铜厚板GTAW热裂纹形成原因分析[J]. 焊接学报, 2018, 39(8): 87 − 91.
Yu Hanchen, Yan Han, Luan Tianmin, et al. Investigation on the cause of the hot cracking in GTA welding of thick copper plates[J]. Transactions of the China Welding Institution, 2018, 39(8): 87 − 91.
|
陈梅峰, 周广涛, 吴世凯, 等. 基于紫铜填充中间层的黄铜激光焊接气孔控制[J]. 中国激光, 2019, 46(3): 122 − 132.
Chen Meifeng, Zhou Guangtao, Wu Shikai, et al. Plastic gradient coordination behavior of boron steel/Q235 steel laser welded joint under welding with synchronous thermal field[J]. Chinese Journal of Lasers, 2019, 46(3): 122 − 132.
|
Maina M R, Okamoto Y, Hamada K, et al. Effects of superposition of 532 nm and 1 064 nm wavelengths in copper micro-welding by pulsed Nd:YAG laser[J]. Journal of Materials Processing Technology, 2022, 299: 117388.
|
Zediker M S, Fritz R D, Finuf M J, et al. Stable keyhole welding of 1 mm thick copper with a 600 W blue laser system[J]. Journal of Laser Applications, 2019, 31: 022404. doi: 10.1016/j.jmatprotec.2021.117388
|
Engler S, Ramsayer R, Poprawe R. Process studies on laser welding of copper with brilliant green and infrared lasers[J]. Physics Procedia, 2011, 12(1): 339 − 346. doi: 10.1016/j.matlet.2020.128700
|
郝庆波. 薄铜板的激光焊技术研究[D]. 长春: 吉林大学, 2007.
Hao Qingbo. Study on the welding of thin copper plate with YAG laser[D]. Changchun: Jilin University, 2007.
|
Chen H C, Bi G J, Nai M L S, et al. Influence of surface condition in fiber laser welding of pure copper[C]//International Congress on Applications of Laser & Electro-Optics(ICALEO). Anaheim, California, USA, 2012 (1): 558 − 564.
|
Genc Oztoprak B, Akman E, Hanon M M, et al. Laser welding of copper with stellite 6 powder and investigation using LIBS technique[J]. Optics & Laser Technology, 2013, 45: 748 − 755.
|
雷玉成, 韩明娟, 王健, 等. 紫铜的激光焊方法: 中国, CN200910035281.3[P]. 2015-12-31.
Lei Yucheng, Han Mingjuan, Wang Jian, et al. Method of copper laser welding: China, CN200910035281.3[P]. 2015-12-31.
|
焦俊科, 王飞亚, 孙加强, 等. 紫铜表面预处理及激光焊工艺研究[J]. 激光与光电子学进展, 2016, 53(3): 164 − 169.
Jiao Junke, Wang Feiya, Sun Jiaqiang, et al. Study on copper surface pre-treating and welding with fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(3): 164 − 169.
|
吴晓红,向发午,刘勇,等. 紫铜激光焊接工艺研究[J]. 应用激光, 2013, 33(2): 169 − 172.
Wu Xiaohong, Xiang Fawu, Liu Yong, et al. Study on laser welding of copper[J]. Applied Laser, 2013, 33(2): 169 − 172.
|
李华晨, 周广涛, 陈梅峰, 等. 分步气体介质下低功率激光焊薄板紫铜成形及组织和性能[J]. 焊接学报, 2020, 41(10): 65 − 72,101.
Li Huachen, Zhou Guangtao, Chen Meifeng, et al. Research on laser welding formability and micro-structure property of copper in stepwise gas medium[J]. Transactions of the China Welding Institution, 2020, 41(10): 65 − 72,101.
|
[1] | YU Jingdan, WANG Ru, WU Wenzhi, HU Zixiang, ZHANG Chulei, WANG Guoxin, YAN Yan. Reliability prediction and design optimization of BGA solder joint based on multi-fidelity surrogate model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 10-16. DOI: 10.12073/j.hjxb.20230205002 |
[2] | JIANG Weiqi, HUANG Haihong, LIU Yun, LI Lei, LIU Zhifeng. Prediction for emission of environmental burden in GTAW based on combined neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 77-85. DOI: 10.12073/j.hjxb.20211104002 |
[3] | LONG Ling, SHI Qingyu, LIU Tie, LIU Xi, SUN Zhanguo. Modeling of material flow during friction stir welding and the application for defect prediction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 84-88. DOI: 10.12073/j.hjxb.2019400017 |
[4] | ZHANG Yongzhi1,2, DONG Junhui1, HOU Jijun1. Predictive modeling of mechanical properties of welded joints based on generalized dynamic fuzzy RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 37-40. DOI: 10.12073/j.hjxb.20150911002 |
[5] | ZHANG Guoli, WANG Jianye, LIU Cang. Prediction on health of welded point based on gray model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 108-110. |
[6] | LI Yajuan, LI Wushen, XIE Qi. Research and prediction on cold cracking susceptibility of Nb-Mo X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 105-108. |
[7] | ZHOU Guangtao, LIU Xuesong, YAN Dejun, FANG Hongyuan. Prediction for welding deformation reducing by welding sequence optimization of upper plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 109-112. |
[8] | DONG Zhibo, ZHAN Xiaohong, WEI Yanhong, LU Yafeng, GUO Ping, YANG Yongfu. Pre-processing software for three-dimensional simulation and prediction of weld solidification cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 21-24. |
[9] | XIN Liming, ZHAO Mingyang, XU Zhigang. Misalignment production and its prediction model in tailored blank laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 89-92, 96. |
[10] | DONG Zhibo, WEI Yanhong, Zhan Xiaohong, WEI Yongqiang. Optimization of mechanical properties prediction models of welded joints combined neural network with genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 69-72. |