Citation: | ZHANG Yongzhi1,2, DONG Junhui1, HOU Jijun1. Predictive modeling of mechanical properties of welded joints based on generalized dynamic fuzzy RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 37-40. DOI: 10.12073/j.hjxb.20150911002 |
Koganti R, Karas C, Joaquin A,etal. Metal inert gas (MIG) welding process optimization for joining aluminum sheet material using OTC/DAIHEN equipment[J]. Proceedings of IMECE, 2003,10(3): 15-21.[2] Benyounis K Y, Olabi A G, Hashmim S J. Multi-response optimization of CO2laser-welding process of austenitic stainless steel[J]. Optics & Laser Technology, 2008, 40(3): 76-87.[3] Benyounis K Y, Olabi A G. Optimization of different welding processes using statistical and numerical approaches-A reference guide[J]. Advances in Engineering Software, 2008, 39(3): 483-496.[4] Pan L K, Wang C C, Hsiso Y C,etal. Optimization of Nd-YAG laser welding onto magnesium alloy via Taguchi analysis[J]. Optics and Laser Technology, 2005, 37(2): 33-42.[5] Peyre P, Sierra G,Deschaux B,etal. Generation of aluminum-steel joints with laser-induced reactive wetting[J]. Materials Science and Engineering, 2007, 444(1): 327-338.[6] Shojaeefard M H, Behnagh R A, Akbari M,etal. Modeling and pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm[J]. Materials & Design, 2013, 44(2): 190-198.[7] 张永志, 董俊慧, 张艳飞. 基于径向基神经网络焊接接头力学性能预测[J]. 焊接学报, 2008, 29(7): 81-84. Zhang Yongzhi, Dong Junhui, Zhang Yanfei. Prediction of mechanical properties of titanium alloy welding joints based on RBF neural network[J]. Transactions of the China Welding Institution, 2008, 29(7): 81-84.[8] 张永志, 董俊慧. 两种预测焊接接头力学性能的模糊神经网络[J]. 焊接学报, 2011, 32(11): 104-107. Zhang Yongzhi, Dong Junhui. Research on two fuzzy neural networks to predict mechanical properties of welded joints[J]. Transactions of the China Welding Institution, 2011, 32(11): 104-107.[9] 张艳飞, 董俊慧, 张永志. 基于自适应模糊神经网络焊接接头力学性能预测[J]. 焊接学报, 2007, 28(9): 5-8. Zhang Yanfei, Dong Junhui, Zhang Yongzhi. Prediction mechanical properties of welded joints based on ANFIS[J]. Transactions of the China Welding Institution, 2007, 28(9): 5-8.[10] 罗 薇. 基于广义回归神经网络的广西农业机械需求预测[J]. 农机化研究, 2013, 35(1): 49-52. Luo Wei. Agricultural machinery demand forecasting in guangxi province based on generalized regression neural network[J]. Journal of Agricultural Mechanization Research, 2013, 35(1): 49-52.[11] 伍世虔, 徐 军. 动态模糊神经网络——设计与应用[M]. 北京: 清华大学出版社, 2008.[12] Chuen C L. Fuzzy logic in control systems: fuzzy logic controller part.I[J]. IEEE Transactions on Systems, Man and Cyberneties, 1990, 20(2): 404-418.[13] Daya R, Lai S, Manjaree P,etal. Corrective action planning using RBF neural network[J]. Applied Soft Computing, 2007(7): 1055-1063.[14] 唐正魁, 董俊慧, 张永志, 等. 混合聚类RBF神经网络焊接接头力学性能预测[J]. 焊接学报, 2014, 35(12): 105-108. Tang Zhengkui, Dong Junhui, Zhang Yongzhi,etal. Prediction of mechanical properties of welding joints by hy-brid cluster fuzzy RBF neural network[J]. Transactions of the China Welding Institution, 2014, 35(12): 105-108.
|
[1] | WANG Bo, YANG Fan, LI Lianbo, ZHANG Hongtao, DENG Qingwen. Analysis of weld forming in magnetically controlled Plasma-FCAW underwater hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 74-80. DOI: 10.12073/j.hjxb.20211104005 |
[2] | HUANG Ruisheng, ZOU Jipeng, GONG Jianfeng, YANG Yicheng, LIANG Xiaomei. Dynamic behavior of laser scanning welding pool and plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 11-16. DOI: 10.12073/j.hjxb.20191016004 |
[3] | LI Bin, ZHAO Zeyang, WANG Chunming, HU Xiyuan, GUO Lian. Behaviors of plasma and keyhole in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 87-91. |
[4] | DONG Qipeng, ZHANG Jiongming, LEI Shaowu, ZHAO Xinkai. Simulation of characteristics of DC plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 27-30. |
[5] | YANG Tao, XU Kewang, LIU Yongzhen, GAO Hongming, WU Lin. Analysis on arc characteristics of plasma-MIG hybrid arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 62-66. |
[6] | YANG Tao, ZHANG Shenghu, GAO Hongming, WU Lin, XU Kewang, LIU Yongzhen. Plasma-MIG hybrid arc welding with PID increment constant current or voltage control algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 81-84,88. |
[7] | WANG Dongsheng, TIAN Zongjun, ZHANG Shaowu, QU Guang, SHEN Lida, HUANG Yinhui. Numerical simulation of temperature field on nanostructured agglomerated powder during plasma spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 50-54. |
[8] | LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28. |
[9] | ZHANG Yi-shun, DONG Xiao-qiang, LI De-yuan. Numerical simulation of fluid field and temperature field in plasma torch[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 77-80. |
[10] | Song Yonglun, Li Junyue. Thermo-equilibdum in welding are plasmas[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (2): 138-145. |
1. |
严春妍,顾正家,聂榕圻,张可召,吴晨,王宝森. X80管线钢水下湿法多道焊残余应力分析. 焊接学报. 2024(03): 15-21+130 .
![]() | |
2. |
李志刚,魏成法,刘德俊,杨翔. 高压水下湿法焊接电弧等离子体介质击穿机制. 焊接学报. 2023(08): 49-56+132 .
![]() |