Citation: | ZHANG Yongzhi1,2, DONG Junhui1, HOU Jijun1. Predictive modeling of mechanical properties of welded joints based on generalized dynamic fuzzy RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 37-40. DOI: 10.12073/j.hjxb.20150911002 |
Koganti R, Karas C, Joaquin A,etal. Metal inert gas (MIG) welding process optimization for joining aluminum sheet material using OTC/DAIHEN equipment[J]. Proceedings of IMECE, 2003,10(3): 15-21.[2] Benyounis K Y, Olabi A G, Hashmim S J. Multi-response optimization of CO2laser-welding process of austenitic stainless steel[J]. Optics & Laser Technology, 2008, 40(3): 76-87.[3] Benyounis K Y, Olabi A G. Optimization of different welding processes using statistical and numerical approaches-A reference guide[J]. Advances in Engineering Software, 2008, 39(3): 483-496.[4] Pan L K, Wang C C, Hsiso Y C,etal. Optimization of Nd-YAG laser welding onto magnesium alloy via Taguchi analysis[J]. Optics and Laser Technology, 2005, 37(2): 33-42.[5] Peyre P, Sierra G,Deschaux B,etal. Generation of aluminum-steel joints with laser-induced reactive wetting[J]. Materials Science and Engineering, 2007, 444(1): 327-338.[6] Shojaeefard M H, Behnagh R A, Akbari M,etal. Modeling and pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm[J]. Materials & Design, 2013, 44(2): 190-198.[7] 张永志, 董俊慧, 张艳飞. 基于径向基神经网络焊接接头力学性能预测[J]. 焊接学报, 2008, 29(7): 81-84. Zhang Yongzhi, Dong Junhui, Zhang Yanfei. Prediction of mechanical properties of titanium alloy welding joints based on RBF neural network[J]. Transactions of the China Welding Institution, 2008, 29(7): 81-84.[8] 张永志, 董俊慧. 两种预测焊接接头力学性能的模糊神经网络[J]. 焊接学报, 2011, 32(11): 104-107. Zhang Yongzhi, Dong Junhui. Research on two fuzzy neural networks to predict mechanical properties of welded joints[J]. Transactions of the China Welding Institution, 2011, 32(11): 104-107.[9] 张艳飞, 董俊慧, 张永志. 基于自适应模糊神经网络焊接接头力学性能预测[J]. 焊接学报, 2007, 28(9): 5-8. Zhang Yanfei, Dong Junhui, Zhang Yongzhi. Prediction mechanical properties of welded joints based on ANFIS[J]. Transactions of the China Welding Institution, 2007, 28(9): 5-8.[10] 罗 薇. 基于广义回归神经网络的广西农业机械需求预测[J]. 农机化研究, 2013, 35(1): 49-52. Luo Wei. Agricultural machinery demand forecasting in guangxi province based on generalized regression neural network[J]. Journal of Agricultural Mechanization Research, 2013, 35(1): 49-52.[11] 伍世虔, 徐 军. 动态模糊神经网络——设计与应用[M]. 北京: 清华大学出版社, 2008.[12] Chuen C L. Fuzzy logic in control systems: fuzzy logic controller part.I[J]. IEEE Transactions on Systems, Man and Cyberneties, 1990, 20(2): 404-418.[13] Daya R, Lai S, Manjaree P,etal. Corrective action planning using RBF neural network[J]. Applied Soft Computing, 2007(7): 1055-1063.[14] 唐正魁, 董俊慧, 张永志, 等. 混合聚类RBF神经网络焊接接头力学性能预测[J]. 焊接学报, 2014, 35(12): 105-108. Tang Zhengkui, Dong Junhui, Zhang Yongzhi,etal. Prediction of mechanical properties of welding joints by hy-brid cluster fuzzy RBF neural network[J]. Transactions of the China Welding Institution, 2014, 35(12): 105-108.
|
[1] | YIN Chi, GUO Yonghuan, FAN Xiying, ZHU Zhiwei, SONG Haoxuan, ZHANG Liang. Multi-objective optimization of aluminum copper laser welding parameters based on BKA-GBRT and MOSPO[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 140-144. DOI: 10.12073/j.hjxb.20240721002 |
[2] | LI Jiahao, SHU Linsen, HENG Zhao, WU Han. Multi-objective optimization of laser cladding parameters based on PCA and RSM-DE algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 67-73. DOI: 10.12073/j.hjxb.20220310001 |
[3] | ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001 |
[4] | HONG Bo, LIU Long, WANG Tao. Prediction in longeron automatic welding of generalized regression neural network by ameliorated fruit flies optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 73-76. |
[5] | ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13. |
[6] | GAO Xiangdong, LIU Yingying, XIAO Zhenlin, CHEN Xiaohui. Analysis of high-power disk laser welding status based on multi-sensor information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 31-34,88. |
[7] | GUO Haibin, LI Guizhong. A double-characteristic fusion-control algorithm for resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 105-108. |
[8] | SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108. |
[9] | CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32. |
[10] | CUI Xiaofang, MA Jun, ZHAO Haiyan, ZHAO Wenzhong, MENG Kai. Optimization of welding sequences of box-like structure based on a genetic algorithm method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 5-8. |
1. |
赵衍华,张粟泓,王非凡,郝云飞,宋建岭,孙世烜,王国庆. 搅拌摩擦焊接与加工技术进展. 航天制造技术. 2025(01): 1-25 .
![]() | |
2. |
李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 .
![]() |