Citation: | JIANG Weiqi, HUANG Haihong, LIU Yun, LI Lei, LIU Zhifeng. Prediction for emission of environmental burden in GTAW based on combined neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 77-85. DOI: 10.12073/j.hjxb.20211104002 |
中国产业信息网数据中心. 2020-2026年中国焊接材料行业市场营销战略及未来发展潜力报告 [EB/OL]. https://www.chyxx.com/research/202006/877599.html. 2020.
Data Center of China Industrial Information Network. Report on marketing strategy and future development potential of China welding materials industry (2020-2026) [EB/OL]. https://www.chyxx.com/research/202006/877599.html.2020.
|
Aravind S, Das A D. An examination on GTAW samples of 7-series aluminium alloy using response surface methodology[J]. Materials Today: Proceedings, 2021, 37: 614 − 620. doi: 10.1016/j.matpr.2020.05.623
|
Vinothkumar H, Balakrishnan M, Gulanthaivel K, et al. Investigation on effects of flux assisted GTAW welding process on mechanical, metallurgical characteristics of dissimilar metals SS 304 and SS 316 L[J]. Materials Today:Proceedings, 2020, 33: 3191 − 3196. doi: 10.1016/j.matpr.2020.04.143
|
郭枭, 徐锴, 吕晓春, 等. 钨极氩弧焊热输入与面积稀释率关系的探讨[J]. 压力容器, 2021, 38(6): 10 − 14.
GUO Xiao, XU Kai, Lü Xiaochun, et al. Investigation on relations between heat input and dilution ratio for GTAW[J]. Pressure Vessel Technology, 2021, 38(6): 10 − 14.
|
D’oliveira A, Paredes R S C, Santos R L C. Pulsed current plasma transferred arc hardfacing[J]. Journal of Materials Processing Technology, 2006, 171(2): 167 − 174. doi: 10.1016/j.jmatprotec.2005.02.269
|
吴仲伟, 夏金兵, 时惜今. 等离子体焊接除尘装置设计与数值模拟[J]. 中国机械工程, 2020, 30(23): 2862 − 2869.
Wu Zhongwei, Xia Jinbing, Shi Xijin. Design and numerical simulation of plasma welding fume removal devices[J]. China Mechanical Engineering, 2020, 30(23): 2862 − 2869.
|
黎雪花, 吴春霞, 胡毅, 等. 三种焊接作业职业危害因素对比分析[J]. 中华劳动卫生职业病杂志, 2022, 40(4): 288 − 291.
Li Xuehua, Wu Chunxia, Hu Yi, et al. Comparative analysis on occupational hazards of three welding operations[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2022, 40(4): 288 − 291.
|
闪顺章, 王从陆. 焊接烟尘扩散数学模型研究[J]. 中国安全生产科学技术, 2018, 14(6): 177 − 181. doi: 10.11731/j.issn.1673-193x.2018.06.028
Shan Shunzhang, Wang Conglu. Study on numerical model for diffusion of welding fume[J]. Journal of Safety Science and Technology, 2018, 14(6): 177 − 181. doi: 10.11731/j.issn.1673-193x.2018.06.028
|
张恒铭, 石玗, 李春凯, 等. 工艺参数对自保护药芯焊丝焊接烟尘的影响[J]. 焊接学报, 2020, 41(11): 31 − 37.
ZHANG Hengming, SHI Yu, LI Chunkai, et al. Effect of process parameters on welding fume of selfshielded flux cored wire[J]. Transactions of the China Welding Institution, 2020, 41(11): 31 − 37.
|
鲍升凯, 卜智翔, 王若玺, 等. 焊接材料对形成焊接烟尘影响的研究进展[J]. 焊接, 2018(10): 20 − 25.
Bao Shengkai, Bu Zhixiang, Wang Ruoxi, et al. Research progress on influence of welding consumables on formation of welding fume[J]. Welding & Joining, 2018(10): 20 − 25.
|
张艳君. 焊接烟尘的治理措施分析[J]. 环境科学与管理, 2007(4): 105 − 107. doi: 10.3969/j.issn.1673-1212.2007.04.032
Zhang Yanjun. Manage measures analysis of welding dust[J]. Environment Science and Management, 2007(4): 105 − 107. doi: 10.3969/j.issn.1673-1212.2007.04.032
|
Amza G, Cicic D T, Rontescu C, et al. Theoretical and experimental research on the environmental impact of certain welding processes[C]// Proceedings of the 4th IASME/WSEAS International Conference on Energy & environment, 2009.
|
Pires I, Quintino L, Amaral V, et al. Reduction of fume and gas emissions using innovative gas metal arc welding variants[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(5): 557 − 567.
|
Guha N, Loomis D, Guyton K Z, et al. Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide[J]. The Lancet Oncology, 2017, 18(5): 581 − 582. doi: 10.1016/S1470-2045(17)30255-3
|
卜智翔, 鲍升凯, 王立世, 等. 熔化极气体保护焊发尘率研究进展[J]. 焊接, 2016(7): 17 − 21. doi: 10.3969/j.issn.1001-1382.2016.07.004
Bu Zhixiang, Bao Shengkai, Wang Lishi, et al. A review of fume formation rate in gas metal arc welding[J]. Welding & Joining, 2016(7): 17 − 21. doi: 10.3969/j.issn.1001-1382.2016.07.004
|
Ioffe I, Maclean D, Perelman N, et al. Fume formation rate at globular to spray mode transition during welding[J]. Journal of Physics D:Applied Physics, 1995, 28(12): 2473 − 2477. doi: 10.1088/0022-3727/28/12/013
|
Dennis J H, Hewitt P J, Redding C, et al. A model for prediction of fume formation rate in gas metal arc welding (GMAW), globular and spray modes, DC electrode positive[J]. The Annals of Occupational Hygiene, 2001, 45(2): 105 − 113. doi: 10.1093/annhyg/45.2.105
|
Deam R T, Simpson S W, Haidar J. A semi-empirical model of the fume formation from gas metal arc welding[J]. Journal of Physics D:Applied Physics, 2000, 33(11): 1393 − 1402. doi: 10.1088/0022-3727/33/11/320
|
卜智翔, 鲍升凯, 王立世, 等. 基于熔滴过渡模型的 GMAW焊接发尘率计算[J]. 焊接学报, 2018, 39(2): 97 − 100.
Bu Zhixiang, Bao Shengkai, Wang Lishi, et al. Calculation of fume formation rate in GMAW process based on metal transfer model[J]. Transactions of the China Welding Institution, 2018, 39(2): 97 − 100.
|
Vimal K E K, Vinodh S, Raja A. Optimization of process parameters of SMAW process using NN-FGRA from the sustainability view point[J]. Journal of Intelligent Manufacturing, 2017, 28(6): 1459 − 1480. doi: 10.1007/s10845-015-1061-5
|
Wang B, Lin R, Liu D, et al. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13737 − 13743. doi: 10.1016/j.ijhydene.2019.03.139
|
王万良, 张兆娟, 高楠, 等. 基于人工智能技术的大数据分析方法研究进展[J]. 计算机集成制造系统, 2019, 25(3): 5 − 23.
Wang Wanliang, Zhang Zhaojuan, Gao Nan, et al. Progress of big data analytics methods based on artificial intelligence techonlogy[J]. Computer Integrated Manufacturing Systems, 2019, 25(3): 5 − 23.
|
唐正魁, 董俊慧, 张永志, 等. 混合聚类RBF神经网络焊接接头力学性能预测[J]. 焊接学报, 2014, 35(12): 105 − 108.
Tang Zhengkui, Dong Junhui, Zhang Yongzhi, et al. Prediction of mechanical properties of welding joints by hybrid cluster fuzzy rbf neural network[J]. Transactions of the China Welding Institution, 2014, 35(12): 105 − 108.
|
Tomaz I V, Colaço F H G, Sarfraz S, et al. Investigations on quality characteristics in gas tungsten arc welding process using artificial neural network integrated with genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(11): 3569 − 3583.
|
朱师琦. GMAW焊接烟尘形成速率的工艺因素影响及预测研究[D]. 武汉: 湖北工业大学, 2020.
Zhu Shiqi. Studies on technological factors impact and prediction of fume emission rate in gas metal arc welding[D]. Wuhan: Hubei University of Technology, 2020.
|
[1] | SUN Jiahao, ZHANG Chaoyong, WU Jianzhao, ZHANG Shuaikun, ZHU Lei. Prediction of weld profile of 316L stainless steel based on generalized regression neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 40-47. DOI: 10.12073/j.hjxb.20210526003 |
[2] | LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001 |
[3] | ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046 |
[4] | XUE Jiaxiang, JIANG Chengfeng, ZHANG Xiaoli, ZHU Xiaojun, ZHU Qiang. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 75-78. |
[5] | LIN Naichang, YANG Xiaoxiang, LIN Wen-jian, ZHU Zhibin. Defect detection of TOFD D scanning image based on parabola Htting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 105-108. |
[6] | ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44. |
[7] | QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36. |
[8] | ZHANG Ke, WU Yixiong, LV Xueqin, JIN Xin. Real-time identification of heading angle based on least squares estimator for welding mobile robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 13-16. |
[9] | LI Ruihua, MENG Guoxiang, GONG Liang, ZHANG Ke. Partial least square approach for multi-parameter assessment of resistance spot welding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 49-52. |
[10] | CAI Yan, YANG Hai-lan, XU Xin, WU Yi-xiong. Spatter model of CO2 arc welding based on partial least-square regression method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 125-128. |