Citation: | WANG Shuqiang, ZHOU You, CHEN Haolei, CHEN Zhao, HAN Yanlin. Image processing system of welding seam of steel structure based on laser vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 101-105, 112. DOI: 10.12073/j.hjxb.20210603001 |
吴兴华. 焊缝跟踪技术的发展与应用现状[J]. 金属加工(热加工), 2020(6): 7 − 9.
Wu Xinghua. Development and application status of welding seam tracking technology[J]. Metal Processing (Hot Processing), 2020(6): 7 − 9.
|
Xu Y, Wang Z. Visual sensing technologies in robotic welding: Recent research developments and future interests[J]. Sensors and Actuators A:Physical, 2021, 320(1): 112551.
|
Banafian N, Fesharakifard R, Menhaj M B. Precise seam tracking in robotic welding by an improved image processing approach[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(1): 251 − 270.
|
Zeng Qingfei, Liu Xuemei, Qiu Chengrong. Inverse kinematics and error analysis of cooperative welding robot with multiple manipulators[J]. China Welding, 2020, 29(2): 9 − 16.
|
Li Y, Hu M, Wang T. Weld image recognition algorithm based on deep learning[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(8): 2052004. doi: 10.1142/S0218001420520047
|
Silva R H G, Galeazzi D, Schwedersky M B, et al. An adaptive orbital system based on laser vision sensor for pipeline GMAW welding[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(7): 1 − 17.
|
Parameshwaran R, Maheswari C, Nithyavathy N, et al. Labview based simulation on welding seam tracking using edge detection technique[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021: 012026.
|
李篪. 焊缝位置识别及图像处理算法的研究[J]. 电子技术与软件工程, 2021(5): 88 − 89.
Li Chi. Research on weld seam position recognition and image processing algorithm[J]. Electronic Technology and Software Engineering, 2021(5): 88 − 89.
|
马波, 林少铎, 张南峰, 等. 斜率表征与卡尔曼滤波的焊缝跟踪方法研究[J]. 机电工程, 2020, 37(2): 206 − 210. doi: 10.3969/j.issn.1001-4551.2020.02.019
Ma Bo, Lin Shaoduo, Zhang Nanfeng, et al. Research on welding seam tracking method based on slope characterization and Kalman filter[J]. Mechanical and Electrical Engineering, 2020, 37(2): 206 − 210. doi: 10.3969/j.issn.1001-4551.2020.02.019
|
尤帅, 张华, 周依霖, 等. 基于Hilditch算法的焊缝结构光中心线断点修补[J]. 热加工工艺, 2020, 49(15): 134 − 138.
You Shuai, Zhang Hua, Zhou Yilin, et al. Breakpoint repair of weld structured light centerline based on hilditch algorithm[J]. Thermal Processing Technology, 2020, 49(15): 134 − 138.
|
杨国威, 王以忠, 王中任, 等. 自主移动焊接机器人嵌入式视觉跟踪控制系统[J]. 计算机集成制造系统, 2020, 26(11): 3049 − 3056.
Yang Guowei, Wang Yizhong, Wang Zhongren, et al. Embedded vision tracking control system for autonomous mobile welding robot[J]. Computer Integrated Manufacturing Systems, 2020, 26(11): 3049 − 3056.
|
Lei T, Huang Y, Wang H, et al. Automatic weld seam tracking of tube-to-tubesheet TIG welding robot with multiple sensors[J]. Journal of Manufacturing Processes, 2021, 63: 60 − 69. doi: 10.1016/j.jmapro.2020.03.047
|
马增强, 钱荣威, 许丹丹, 等. 线结构光焊接图像去噪方法[J]. 焊接学报, 2021, 42(2): 8 − 15. doi: 10.12073/j.hjxb.20200519002
Ma Zengqiang, Qian Rongwei, Xu Dandan, et al. Denoising method of line structured light welding image[J]. Transactions of the China Welding Institution, 2021, 42(2): 8 − 15. doi: 10.12073/j.hjxb.20200519002
|
Tian Y Z, Liu H F, Li L, et al. Robust identification of weld seam based on region of interest operation[J]. Advances in Manufacturing, 2020, 8(4): 473 − 485. doi: 10.1007/s40436-020-00325-y
|
[1] | XU Xinxin, LIANG Xiaoguang, YANG Ruisheng, YAN Dongyang, ZHOU Li. Effect of welding residual stress on bearing capacity of fusion welded joint of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 17-22. DOI: 10.12073/j.hjxb.20200403004 |
[2] | HUANG Chaoqun1, LI Huan1, LUO Chuanguang1,2, SONG Yonglun3. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 54-58. DOI: 10.12073/j.hjxb.20150710004 |
[3] | LIANG Wei, GUO Kefeng, GONG Yi, BIAN Gongwen. High precision prediction method of residual stress and welding distortion of aluminum alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 58-62. DOI: 10.12073/j.hjxb.20170513 |
[4] | SUN Jiantong, LI Xiaoyan, ZHANG Liang, YAO Wentao. Study of residual stress measurement of rolling aluminum alloy using x-Ray diffraction method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 61-64. |
[5] | DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28. |
[6] | HUANG Zhiye, CHEN Furong. Finite element analysis of shot peening treatment to improve welding pesidual stress of 7A52 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 35-40. |
[7] | WANG Xijing, Li Na, ZHANG Zhongke, Li Changri. FSW residual stress of aluminum alloy LY12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 81-84. |
[8] | ZHOU Guangtao, LIU Xuesong, YANG Jianguo, YAN Dejun, FANG Hongyuan. Numerical simulation of welding residual stress for longitudinal straight weld seam for aluminum alloy thin-wall cylinder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 89-92. |
[9] | FU Pengfei, HUANG Rui, LIU Fangjun, ZUO Congjin. Microstructure and residual stress of TA12 titanium alloy with electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 82-84. |
[10] | WANG Hong-yang, CHI Ming-sheng, HUANG Rui-sheng, LIU Li-ming. Analysis on residual stress of hybrid laser-tungste inert gas arc welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 33-36. |