Advanced Search
WANG Shuqiang, ZHOU You, CHEN Haolei, CHEN Zhao, HAN Yanlin. Image processing system of welding seam of steel structure based on laser vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 101-105, 112. DOI: 10.12073/j.hjxb.20210603001
Citation: WANG Shuqiang, ZHOU You, CHEN Haolei, CHEN Zhao, HAN Yanlin. Image processing system of welding seam of steel structure based on laser vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 101-105, 112. DOI: 10.12073/j.hjxb.20210603001

Image processing system of welding seam of steel structure based on laser vision

More Information
  • Received Date: June 02, 2021
  • Accepted Date: February 14, 2022
  • Available Online: February 18, 2022
  • Aiming at the shortcomings of many types of steel structure parts, small batches, poor consistency of weld shape and position, and complicated repetitive positioning process of robots, a laser vision-based steel structure weld image processing system is designed. The technology uses CCD industrial cameras and lasers, Collect welding seam images with laser stripes, use median filtering to soften noise, otsu algorithm adaptive threshold segmentation, open operation and morphological processing to remove small connected areas in the image except target pixels, extract laser stripes Finally, the Hough transform is used to fit the center line of the center line to obtain the position of the feature point, and the feasibility of the technology is verified by the bone scaffold test. The test shows that this method can detect the weld feature points quickly and accurately actual requirements, and meet the actual requirements.
  • 吴兴华. 焊缝跟踪技术的发展与应用现状[J]. 金属加工(热加工), 2020(6): 7 − 9.

    Wu Xinghua. Development and application status of welding seam tracking technology[J]. Metal Processing (Hot Processing), 2020(6): 7 − 9.
    Xu Y, Wang Z. Visual sensing technologies in robotic welding: Recent research developments and future interests[J]. Sensors and Actuators A:Physical, 2021, 320(1): 112551.
    Banafian N, Fesharakifard R, Menhaj M B. Precise seam tracking in robotic welding by an improved image processing approach[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(1): 251 − 270.
    Zeng Qingfei, Liu Xuemei, Qiu Chengrong. Inverse kinematics and error analysis of cooperative welding robot with multiple manipulators[J]. China Welding, 2020, 29(2): 9 − 16.
    Li Y, Hu M, Wang T. Weld image recognition algorithm based on deep learning[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(8): 2052004. doi: 10.1142/S0218001420520047
    Silva R H G, Galeazzi D, Schwedersky M B, et al. An adaptive orbital system based on laser vision sensor for pipeline GMAW welding[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(7): 1 − 17.
    Parameshwaran R, Maheswari C, Nithyavathy N, et al. Labview based simulation on welding seam tracking using edge detection technique[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021: 012026.
    李篪. 焊缝位置识别及图像处理算法的研究[J]. 电子技术与软件工程, 2021(5): 88 − 89.

    Li Chi. Research on weld seam position recognition and image processing algorithm[J]. Electronic Technology and Software Engineering, 2021(5): 88 − 89.
    马波, 林少铎, 张南峰, 等. 斜率表征与卡尔曼滤波的焊缝跟踪方法研究[J]. 机电工程, 2020, 37(2): 206 − 210. doi: 10.3969/j.issn.1001-4551.2020.02.019

    Ma Bo, Lin Shaoduo, Zhang Nanfeng, et al. Research on welding seam tracking method based on slope characterization and Kalman filter[J]. Mechanical and Electrical Engineering, 2020, 37(2): 206 − 210. doi: 10.3969/j.issn.1001-4551.2020.02.019
    尤帅, 张华, 周依霖, 等. 基于Hilditch算法的焊缝结构光中心线断点修补[J]. 热加工工艺, 2020, 49(15): 134 − 138.

    You Shuai, Zhang Hua, Zhou Yilin, et al. Breakpoint repair of weld structured light centerline based on hilditch algorithm[J]. Thermal Processing Technology, 2020, 49(15): 134 − 138.
    杨国威, 王以忠, 王中任, 等. 自主移动焊接机器人嵌入式视觉跟踪控制系统[J]. 计算机集成制造系统, 2020, 26(11): 3049 − 3056.

    Yang Guowei, Wang Yizhong, Wang Zhongren, et al. Embedded vision tracking control system for autonomous mobile welding robot[J]. Computer Integrated Manufacturing Systems, 2020, 26(11): 3049 − 3056.
    Lei T, Huang Y, Wang H, et al. Automatic weld seam tracking of tube-to-tubesheet TIG welding robot with multiple sensors[J]. Journal of Manufacturing Processes, 2021, 63: 60 − 69. doi: 10.1016/j.jmapro.2020.03.047
    马增强, 钱荣威, 许丹丹, 等. 线结构光焊接图像去噪方法[J]. 焊接学报, 2021, 42(2): 8 − 15. doi: 10.12073/j.hjxb.20200519002

    Ma Zengqiang, Qian Rongwei, Xu Dandan, et al. Denoising method of line structured light welding image[J]. Transactions of the China Welding Institution, 2021, 42(2): 8 − 15. doi: 10.12073/j.hjxb.20200519002
    Tian Y Z, Liu H F, Li L, et al. Robust identification of weld seam based on region of interest operation[J]. Advances in Manufacturing, 2020, 8(4): 473 − 485. doi: 10.1007/s40436-020-00325-y
  • Related Articles

    [1]XU Xinxin, LIANG Xiaoguang, YANG Ruisheng, YAN Dongyang, ZHOU Li. Effect of welding residual stress on bearing capacity of fusion welded joint of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 17-22. DOI: 10.12073/j.hjxb.20200403004
    [2]HUANG Chaoqun1, LI Huan1, LUO Chuanguang1,2, SONG Yonglun3. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 54-58. DOI: 10.12073/j.hjxb.20150710004
    [3]LIANG Wei, GUO Kefeng, GONG Yi, BIAN Gongwen. High precision prediction method of residual stress and welding distortion of aluminum alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 58-62. DOI: 10.12073/j.hjxb.20170513
    [4]SUN Jiantong, LI Xiaoyan, ZHANG Liang, YAO Wentao. Study of residual stress measurement of rolling aluminum alloy using x-Ray diffraction method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 61-64.
    [5]DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28.
    [6]HUANG Zhiye, CHEN Furong. Finite element analysis of shot peening treatment to improve welding pesidual stress of 7A52 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 35-40.
    [7]WANG Xijing, Li Na, ZHANG Zhongke, Li Changri. FSW residual stress of aluminum alloy LY12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 81-84.
    [8]ZHOU Guangtao, LIU Xuesong, YANG Jianguo, YAN Dejun, FANG Hongyuan. Numerical simulation of welding residual stress for longitudinal straight weld seam for aluminum alloy thin-wall cylinder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 89-92.
    [9]FU Pengfei, HUANG Rui, LIU Fangjun, ZUO Congjin. Microstructure and residual stress of TA12 titanium alloy with electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 82-84.
    [10]WANG Hong-yang, CHI Ming-sheng, HUANG Rui-sheng, LIU Li-ming. Analysis on residual stress of hybrid laser-tungste inert gas arc welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 33-36.
  • Cited by

    Periodical cited type(6)

    1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 .
    2. 甘世明,张佳欣,包晓艳,韩永全,孙振邦. 能量配比对6 mm 7A52铝合金板材VPPA-MIG复合焊接残余应力分布的影响. 内蒙古工业大学学报(自然科学版). 2024(05): 461-466 .
    3. 邱劲松,马佳良,杨鑫华,许鸿吉. 钻孔法测大型构件焊接残余应力试验的误差分析与优化. 焊接技术. 2022(03): 27-33+114 .
    4. 梁巧云,蔺治强,张吉银,姚倡锋. 叶片铣削及喷丸加工残余应力测试与三维表征. 机械科学与技术. 2022(11): 1794-1804 .
    5. 黄如旭,谢晓忠,张平平,祁江涛,李艳青,黄进浩. 基于盲孔法的水下承压结构残余应力测试研究. 舰船科学技术. 2021(07): 23-27 .
    6. 李刚,李中双,符伟,谭俊哲,杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响. 材料导报. 2021(S2): 325-328 .

    Other cited types(2)

Catalog

    Article views (422) PDF downloads (77) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return