Advanced Search
HUANG Zhiye, CHEN Furong. Finite element analysis of shot peening treatment to improve welding pesidual stress of 7A52 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 35-40.
Citation: HUANG Zhiye, CHEN Furong. Finite element analysis of shot peening treatment to improve welding pesidual stress of 7A52 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 35-40.

Finite element analysis of shot peening treatment to improve welding pesidual stress of 7A52 aluminum alloy

More Information
  • Received Date: November 28, 2012
  • A coupled thermal-mechanical FE (finite element) model of 7A52 aluminum alloy TANDEM welding and a simplified FE model for single-GCr15 shot impact simulation were developed separately. The element size of welded joint region which was impacted by shots was amplified reasonably. Based on the premise,the numerical results would not be affected by this simplification. The computational results of welding residual stress were obtained,and the influences of ball's dimension and impact velocity on induced residual stresses were analyzed subsequently. On the basis,the coupling computation of residual stress field in aluminum alloy welded joint and the shot peening treatment were performed by means of data transfer based on the standard and explicit solver of ABAQUS software. The computational results showed that the residual stresses on the surface and depth direction of welded joint were improved remarkably after shot peening.
  • Related Articles

    [1]TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001
    [2]CHEN Shujun, WU Na, XIAO Jun, LU Zhenyang. Realization and expulsion control of piezoelectric actuator assisted resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 1-7. DOI: 10.12073/j.hjxb.20200122002
    [3]CEN Yaodong, CHEN Furong, CHEN Lin. Mechanism of spatter defects in resistance plug welding of dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 115-120. DOI: 10.12073/j.hjxb.2019400323
    [4]LUO Yi, ZHU Yang, WAN Rui, XIE Xiaojian. Analysis on main factors of resistance spot welding spatter of galvanized sheet based on structure-bearing acoustic emission signals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 85-89.
    [5]WANG Mingmao, TAO Wang, MA Yinan, CHEN Yanbin, WANG Yang. Research on laser spot weld-bonding process characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 101-104.
    [6]XUE Haitao, LI Yongyan, CUI Chunxiang, AN Jinlong. Identification of multiclass defects in aluminum alloy resistance spot welding based on support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 97-100.
    [7]JIANG Shu-yuan, ZHENG Xiao-fang, CHEN Huan-ming, LIU Zhi-ling. Outside magnetic field control to spatter of CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 65-67.
    [8]WANG Ya-rong, ZHANG Zhong-dian, FENG Ji-cai, Liu Hui, ZOU Li-jing. Effects of surface conditions on spot welded joint of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 27-30.
    [9]MA Yue-zhou, MA Chun-wei, ZHANG Peng-xian, CHEN Jian-hong. The Model of Spatter Prediction in CO2 Arc Welding Based on the Character of Sound Signal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 19-22.
    [10]Wang Xinzhi, Chen Wuzhu, Cheng Shihong. Reducing Spatter for CO2 Welding Using Inverter with Satiable Inductor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 57-62.

Catalog

    Article views (277) PDF downloads (120) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return