Citation: | HU Ling, YU Dingkun, BU Yongzhou, LUO Qingcheng, XUE Songbai. Effect of combined addition of Sn and Ce elements on the microstructure and properties of the joints brazed with BAg5CuZn filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 101-108. DOI: 10.12073/j.hjxb.20230219001 |
The effects of Sn and Ce combined addition on the melting characteristics, spreading ability of BAg5CuZn filler metal, the microstructure and mechanical properties of their corresponding brazed joints were studied respectively. The results showed that the solidus and liquidus temperatures of the filler metals decreased significantly, and the spreading areas of the filler metals on the base metal increased with the combined addition of Sn and Ce elements. However, when the mass fraction of Ce element was higher than 0.15%, the spreading performance of the filler metals deteriorated. The addition of appropriate amount of Sn and Ce elements could significantly improve the microstructure of the joints brazed with BAg5CuZn filler metals. When the mass fractions of Sn and Ce elements reached 2% and 0.15% respectively, the microstructure of the joint was obviously refined, which the most uniform distribution was obtained. However, excessive Ce addition in the filler metal tended to form complex intermetallic compounds with Ag and Sn elements, and precipitate at the grain boundary, which significantly worsened the uniformity of the joint microstructure. When mass fractions of Sn and Ce elements in the filler metal were reached 2% and 0.15% respectively, the shear strength obtained the maximum value of 495 MPa, which was 23.1% higher than that of the joint brazed with BAg5CuZn filler metal.
[1] |
常青, 张丽霞. 先进功能材料钎焊连接研究进展[J]. 焊接学报, 2022, 43(12): 1 − 11.
Chang Qing, Zhang Lixia. Research progress on brazing of advanced functional materials[J]. Transactions of the China Welding Institution, 2022, 43(12): 1 − 11.
|
[2] |
Offcial Joumal of the European Union. The restiction of the use ofcertain hazardous substances in electical and electronic equipment: directive 2002/96/EC of the european parliament and of the council of 27 january 2003[R].2003.
|
[3] |
Wang H, Xue S B. Effect of Ag on the properties of solders and brazing filler metals[J]. Journal of Materials Science Materials in Electronics, 2016, 27(1): 1 − 13. doi: 10.1007/s10854-015-3747-z
|
[4] |
Winiowski A, Rózanski M. Impact of tin and nickel on the brazing properties of silver filler metals and on the strength of brazed joints made of stainless steels[J]. Archives of Metallurgy and Materials, 2013, 58(4): 1007 − 1011. doi: 10.2478/amm-2013-0118
|
[5] |
Daniel S, Gunther W, Sebastian S. Development of Ag-Cu-Zn-Sn brazing filler metals with a 10weigh-% reduction of silver and liquids temperature[J]. China Welding, 2014, 23(4): 25 − 31.
|
[6] |
Long W M, Li S N, Du D, et al. Morphological evolution and development trend of brazing materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781 − 3790.
|
[7] |
Luo Q B, Xue S B, Wu J. Influences of Sn on properties of Ag-based and Cu-based brazing filler metals[J]. Crystals, 2021, 11(11): 1403. doi: 10.3390/cryst11111403
|
[8] |
Zhang L, Xue S B, Gao L L, et al. Effects of rare earths onproperties and microstructures of lead-free solder alloys[J]. Journal of Materials Science:Materials in Electronics, 2009, 20(8): 685 − 694. doi: 10.1007/s10854-009-9895-2
|
[9] |
Wu Q P, Luo Z, Wang Y, et al. Effects of rare earth Ce on the brazing performance of high energy mechanical milling Cu-based alloy powder[J]. Metals - Open Access Metallurgy Journal, 2018, 8(7): 495.
|
[10] |
李卓然, 矫宁, 冯吉才, 等. 合金元素对 AgCuZn 系钎料合金组织与性能的影响[J]. 焊接学报, 2008, 29(3): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.03.017
Li Zhuoran, Jiao Ning, Feng Jicai, et al. Effect of alloying elements on microstructure and property of AgCuZnSn brazing alloy[J]. Transactions of the China Welding Institution, 2008, 29(3): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.03.017
|
[11] |
Webb E B, Grest G S, Heine D R. Precursor film controlled wetting of Pb on Cu.[J]. Physical Review Letters, 2003, 91(23): 236102.236102.
|
[12] |
Wu J, Xue S B, Zhang P. Effect of In and Pr on the microstructure and properties of low-silver filler metal[J]. Crystals, 2021, 11(8): 929. doi: 10.3390/cryst11080929
|
[13] |
马超力. Ga、Ce对Ag17CuZnSn钎料组织及性能的影响[D]. 南京: 南京航空航天大学, 2017.
Ma Chaoli. Effect of Ga and Ce on the Microstructures and Properties of Ag17CuZnSn Filler Metals [ D ]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2017.
|
[14] |
Cao J, Zhang L X, Wang H Q, et al. Effect of silver content on microstructure and properties of brass/steel induction brazing joint using Ag-Cu-Zn-Sn filler metal[J]. Journal of Materials Science & Technology, 2011, 27(4): 377 − 381.
|
[15] |
Sui F F, Long W M, Liu S X, et al. Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag–Cu–Zn brazing filler metal[J]. Materials & Design, 2013, 46: 605 − 608.
|
[16] |
Lai Z M, Xue S B, Han X P, et al. Study on microstructure and property of brazed joint using AgCuZn-x(Ga, Sn, In, Ni) brazing alloy[J]. Rare Metal Materials and Engineering, 2010, 39(3): 397 − 400. doi: 10.1016/S1875-5372(10)60087-2
|
[17] |
Ji F, Xue S B, Dai W. Reliability studies of Cu/Al joints brazed with Zn–Al–Ce filler metals[J]. Materials and Design, 2012, 42: 156 − 163. doi: 10.1016/j.matdes.2012.05.028
|
[18] |
马超力, 薛松柏, 王博, 等. Ga和Ce复合添加对低银无镉钎料组织及性能的影响[J]. 稀有金属材料与工程, 2019, 48(1): 91 − 96.
Ma Chaoli, Xue Songbai, Wang Bo, et al. Effects of Ga and Ce on the microstructure and properties of cadmium-free silver filler metals[J]. Rare Metal Materials and Engineering, 2019, 48(1): 91 − 96.
|
[1] | YANG Yicheng, DU Bing, HUANG Jihua, CHEN Jian, XU Fujia, HUANG Ruisheng. Influence of tungsten electrode geometric characteristics on the thermodynamics behavior of arc and molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 104-108. DOI: 10.12073/j.hjxb.20220918003 |
[2] | LI Dequan, FAN Ding, HUANG Jiankang, YAO Xinglong. Effect of copper vapor on arc characteristics under DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 71-76. DOI: 10.12073/j.hjxb.20220701002 |
[3] | ZHANG Tianyi, ZHANG Zhaodong, WANG Zeli, XU Guomin, LIU Liming. Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002 |
[4] | LEI Zheng, ZHU Zongtao, LI Yuanxing, CHEN Hui. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 9-14, 27. DOI: 10.12073/j.hjxb.20210131003 |
[5] | YU Shibao, ZHAO Zhongqiu, GAO Zhonglin, ZHAI Baoling, SHI Tao, LIU Liming. Effect of pulse frequency on the stability of triple-wire indirect arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 92-96. DOI: 10.12073/j.hjxb.20200922001 |
[6] | Wenji Liu, Zhenyu Guan, Liangyu Li, Jianfeng Yue. Development of a narrow gap welding experiment system for oscillating arc sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. |
[7] | LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 67-71. DOI: 10.12073/j.hjxb.2019400183 |
[8] | JIANG Yuanning, CHEN Maoai, WU Chuansong. Synchronous acquisition and analysis of metal transfer images and electrical parameters in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 63-66. |
[9] | LIU Lijun, ZHOU Bintao, DAI Hongbin, BI Shujuan, LAN Hu, ZHANG Huajun. Dual-channel signal acquisition and characteristics analysis of arc sound in pipe MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 41-44. |
[10] | QIU Ling, FAN Chenglei, LIN Sanbao, YANG Chunli. High-frequency pulse modulated variable polarity welding power and its arc pressure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 81-84. |