Citation: | ZHANG Tianyi, ZHANG Zhaodong, WANG Zeli, XU Guomin, LIU Liming. Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002 |
Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B:Engineering, 2018, 143: 172 − 196. doi: 10.1016/j.compositesb.2018.02.012
|
Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917 − 1928. doi: 10.1007/s11665-014-0958-z
|
耿海滨, 熊江涛, 黄丹, 等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接, 2015(11): 17 − 21.
Geng Haibin, Xiong Jiangtao, Huang Dan, et al. Research status and trend of wire arc additive manufacturing[J]. Welding & Joining, 2015(11): 17 − 21.
|
Rodrigues T A, Duarte V, Miranda R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121.
|
Yang D, Wang G, Zhang G. A comparative study of GMAW-and DE-GMAW-based additive manufacturing techniques: thermal behavior of the deposition process for thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 2175 − 2184. doi: 10.1007/s00170-016-9898-0
|
Wu W, Xue J, Yao P. A comparative study on single- and double-arc deposition processes[J]. Materials and Manufacturing Processes, 2020, 35(3): 346 − 353.
|
Miao Y, Li C, Yin C, et al. Joint characteristics of carbon steel bypass-current PAW on additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 61: 408 − 416. doi: 10.1016/j.jmapro.2020.10.014
|
余淑荣, 程能弟, 黄健康, 等. 旁路耦合电弧增材制造热过程与组织关系[J]. 焊接学报, 2019, 40(8): 1 − 6.
Yu Shurong, Cheng Nengdi, Huang Jiankang, et al. Relationship between thermal process and microstructure of bypass coupled arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(8): 1 − 6.
|
Zuo W, Ma L, Lu Y, et al. Effects of solution treatment temperatures on microstructure and mechanical properties of TIG–MIG hybrid arc additive manufactured 5356 aluminum alloy[J]. Metals and Materials International, 2018, 24(6): 1346 − 1358. doi: 10.1007/s12540-018-0142-3
|
Li F, Chen S, Shi J, et al. Thermoelectric cooling-aided bead geometry regulation in wire and arc-based additive manufacturing of thin-walled structures[J]. Applied Sciences, 2018, 8(2): 207. doi: 10.3390/app8020207
|
Fang D, Song G, Liu L. A novel method of triple-wire gas indirect arc welding[J]. Materials and Manufacturing Processes, 2016, 31(3): 352 − 358. doi: 10.1080/10426914.2015.1058949
|
Liu L, Fang D, Song G. Experimental investigation of wire arrangements for narrow-gap triple-wire gas indirect arc welding[J]. Materials and Manufacturing Processes, 2016, 31(16): 2136 − 2142. doi: 10.1080/10426914.2015.1090603
|
Liu L, Hu C, Yu S, et al. A triple-wire indirect arc welding method with high melting efficiency of base metal[J]. Journal of Manufacturing Processes, 2019, 44: 252 − 260. doi: 10.1016/j.jmapro.2019.05.022
|
王泽力, 张天奕, 刁国宁, 等. 低碳钢三丝间接电弧焊传热机制及工艺性能[J]. 焊接学报, 2022, 43(1): 1 − 6. doi: 10.12073/j.hjxb.20210627001
Wang Zeli, Zhang Tianyi, Diao Guoning, et al. Heat transfer mechanism and mechanical properties of triple-wire gas indirect arc welding for low carbon steel[J]. Transactions of the China Welding Institution, 2022, 43(1): 1 − 6. doi: 10.12073/j.hjxb.20210627001
|
Liu L, Yu S, Song G, et al. Analysis of arc stability and bead forming with high-speed TW-GIA welding[J]. Journal of Manufacturing Processes, 2019, 46: 67 − 76. doi: 10.1016/j.jmapro.2019.08.023
|
于世宝, 赵中秋, 高忠林, 等. 脉冲频率对三丝间接电弧焊稳定性的影响[J]. 焊接学报, 2021, 42(2): 92 − 96. doi: 10.12073/j.hjxb.20180530003
Yu Shibao, Zhao Zhongqiu, Gao Zhonglin, et al. Effect of pulse frequency on the stability of triple-wire indirect arc welding[J]. Transactions of the China Welding Institution, 2021, 42(2): 92 − 96. doi: 10.12073/j.hjxb.20180530003
|
刁国宁, 徐国敏, 张天奕, 等. 焊丝伸出长度对三丝间接电弧焊稳定性和焊缝成形的影响[J]. 焊接学报, 2022, 43(3): 31 − 36. doi: 10.12073/j.hjxb.20210926001
Diao Guoning, Xu Guomin, Zhang Tianyi, et al. Effect of wire extension on stability and bead formation of triple-wire gas indirect arc welding[J]. Transactions of the China Welding Institution, 2022, 43(3): 31 − 36. doi: 10.12073/j.hjxb.20210926001
|
Xiong J, Zhang G, Gao H, et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 417 − 423. doi: 10.1016/j.rcim.2012.09.011
|
Bourlet C, Zimmer-Chevret S, Pesci R, et al. Microstructure and mechanical properties of high strength steel deposits obtained by wire-arc additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 285: 116759. doi: 10.1016/j.jmatprotec.2020.116759
|
Martina F, Ding J, Williams S, et al. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel[J]. Additive Manufacturing, 2019, 25: 545 − 550. doi: 10.1016/j.addma.2018.11.022
|
[1] | LI Dequan, FAN Ding, HUANG Jiankang, YAO Xinglong. Effect of copper vapor on arc characteristics under DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 71-76. DOI: 10.12073/j.hjxb.20220701002 |
[2] | WEN Quan, LI Wenya, WU Xuemeng, REN Shouwei, ZHAO Jing. Forming mechanism and processing of stationary upper shoulder BT-FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 88-96. DOI: 10.12073/j.hjxb.20211128002 |
[3] | LEI Zheng, ZHU Zongtao, LI Yuanxing, CHEN Hui. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 9-14, 27. DOI: 10.12073/j.hjxb.20210131003 |
[4] | LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 67-71. DOI: 10.12073/j.hjxb.2019400183 |
[5] | LIU Liming, YU Shibao, HU Chenghui. Analysis of arc shape and weld forming in triple-wire indirect arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 1-6. DOI: 10.12073/j.hjxb.2019400145 |
[6] | YANG Tao, HE Shuang, CHEN Yong, TIAN Honglei, CHEN Hui. Arc characteristics and weld formation during laser-pulsed MAG hybrid arc welding of 304L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 65-69. |
[7] | SHI Chuanwei, ZOU Yong, ZOU Zengda, WU Dongting. Effect of angles between twin wires on twin-wire indirect arc characteristic[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 59-62. |
[8] | ZHENG Shaoxian, ZHU Liang, ZHANG Xulei, CHEN Jianhong. Constricting arc characteristic with flux strips[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 57-61. |
[9] | CAO Mei-qing, ZOU Zeng-da, WANG Chun-mao, QU Shi-yao. Influence of welding current on arc characteristic of twin-wire indirect arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 47-50. |
[10] | HU Sheng-sun, MENG Ying-qian, BAO Jia-ming, SUN Dong. Characteristics of different medium aqueous vapor plasmaarc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 5-8,27. |
1. |
高东,李永利,邓颖,周好斌. 旁路耦合电弧TIG焊原理及工艺研究. 热加工工艺. 2025(01): 65-69 .
![]() | |
2. |
孟美情,韩俭,朱瀚钊,梁哲滔,蔡养川,张欣,田银宝. 基于多丝电弧增材制造研究现状. 材料工程. 2025(05): 46-62 .
![]() | |
3. |
王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 .
![]() | |
4. |
李博洋,巴现礼,陈帅帅,徐国敏,刘黎明. 不同路径下的低碳钢三丝间接电弧增材制造组织与性能. 焊接技术. 2024(10): 1-6+145 .
![]() | |
5. |
张加恒,黄祎,郭顺,杨东青,闫德俊,李东,王克鸿. 超音频MIG辅助三丝电弧增材制造工艺研究. 电焊机. 2023(02): 104-110 .
![]() | |
6. |
吴涛,谭振,王立伟,梁志敏,汪殿龙. 异质双丝间接电弧增材制造Al-Mg-Cu合金组织与力学性能. 焊接学报. 2023(10): 64-70+136 .
![]() | |
7. |
朱强,姚屏,许斯帆,许可昱. 316L不锈钢电弧增材制造工艺研究. 精密成形工程. 2023(11): 164-170 .
![]() |