Advanced Search
LI Dequan, FAN Ding, HUANG Jiankang, YAO Xinglong. Effect of copper vapor on arc characteristics under DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 71-76. DOI: 10.12073/j.hjxb.20220701002
Citation: LI Dequan, FAN Ding, HUANG Jiankang, YAO Xinglong. Effect of copper vapor on arc characteristics under DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 71-76. DOI: 10.12073/j.hjxb.20220701002

Effect of copper vapor on arc characteristics under DC magnetic field

More Information
  • Received Date: June 30, 2022
  • Available Online: April 02, 2023
  • In order to study the effect of metal vapor on the arc characteristics of gas metal arc welding (GMAW) under the action of DC longitudinal magnetic field, tungsten-copper composites were made into special tungsten electrode instead of molten electrode to produce copper vapor, which was tested and studied by high speed camera method, spectral temperature measurement method and keyhole detection method. The results show that when copper vapor enters the arc plasma, the arc appears delamination. With the increase of copper vapor content, the outer radius of arc core increases, and the size of the arc core area decreases. When the Cu content is 0%, after the DC magnetic field is applied, the arc shrinks in the cathode and expands in anode with an notable increase in the axial maximum temperature of the arc. The peak value of the arc pressure deviates from the axis, and when the magnetic field intensity B = 0.015 T , the arc pressure shows a bimodal distribution. The distribution of current density is similar to that of arc pressure. With the intervention of copper vapor, the arc in the arc core region shrinks in the cathode and expands in the anode region. While the copper vapor around the arc core shrinks obviously, and the rise of the maximum axial temperature of the arc decreases obviously. At the same time, the copper vapor expands the conductive area of the arc, weakens the circumferential electromagnetic force. The pressure at the arc center decreases, and the distribution of anode current density was flattened.
  • 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

    Yan fei, Zhou Yifan, Tang Benkan, et al. Welding characteristics of Al/steel dissimilar metals based on magnetically controlled metallurgy[J]. Transactions of the China Welding Institution, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004
    孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155 − 21165. doi: 10.11896/cldb.19060200

    Sun Yajie, Chang Yunlong. Development of magnetically controlled arc welding process and new technology[J]. Materials Reports, 2020, 34(21): 21155 − 21165. doi: 10.11896/cldb.19060200
    Wu Hong, Chang Yunlong, Lu Lin, et al. Review on magnetically controlled arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 4263 − 4273. doi: 10.1007/s00170-017-0068-9
    Fan Ding, Yao Xinlong, Hou Yingjie, et al. The study of arc behavior with different content of copper vapor in GTAW[J]. China Welding, 2022, 31(2): 1 − 14.
    Tanaka K, Shigeta M, Tanaka M, et al. Investigation of transient metal vapour transport processes in helium arc welding by imaging spectroscopy[J]. Journal of Physics D:Applied Physics, 2020, 53(42): 1 − 8.
    Xiang J A, Chen F, Phb C, et al. Numerical study of the metal vapour transport in tungsten inert-gas welding in argon for stainless steel[J]. Applied Mathematical Modelling, 2020, 79: 713 − 728. doi: 10.1016/j.apm.2019.11.001
    肖磊, 樊丁, 黄健康, 等. 外加高频纵向磁场作用下的 TIG 焊电弧数值模拟[J]. 焊接学报, 2017, 38(2): 66 − 70.

    Xiao Lei, Fan Ding, Huang Jiankang, et al. Numerical simulation of TIG welding arc with extra high-frequency longitudinal magnetic field[J]. Transactions of the China Welding Institution, 2017, 38(2): 66 − 70.
    Schupp J, Fischer W, Mecke H. Welding arc control with power electronics[C]//8th International Conference on Power Electronics and Variable Speed Drives. London, 2000: 443−450.
    Murphy A B. The effects of metal vapour in arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434001.
    Tanaka M, Yamamoto K, Tashiro S, et al. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434009.
    斯红, 华学明, 张旺, 等. 基于Boltzmann光谱法的焊接电弧温度场测量计算[J]. 光谱学与光谱分析, 2012, 32(9): 2311 − 2313. doi: 10.3964/j.issn.1000-0593(2012)09-2311-03

    Si Hong, Hua Xueming, Zhang Wang, et al. Welding Arc temperature field measurements based on Boltzmann Spectrometry[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2311 − 2313. doi: 10.3964/j.issn.1000-0593(2012)09-2311-03
    黄勇, 瞿怀宇, 樊丁, 等. 耦合电弧AA-TIG焊电弧压力测量与分析[J]. 焊接学报, 2013, 34(3): 33 − 36.

    Huang Yong, Zhai Huaiyu, Fan Ding, et al. Arc pressure measurement and analysis of coupling arc AA-TIG[J]. Transactions of the China Welding Institution, 2013, 34(3): 33 − 36.
    Murphy A B. A comparison of treatments of diffusion in thermal plasmas[J]. Journal of Physics D: Applied Physics, 1996, 29(7): 1922 − 1932. doi: 10.1088/0022-3727/29/7/029
    Gleizes A, Gonzalez J J, Liani B, et al. Calculation of net emission coefficient of thermal plasmas in mixtures of gas with metallic vapour[J]. Journal of Physics D: Applied Physics, 1999, 26(11): 1921 − 1927.
    Xiao L, Fan D, Huang J. Tungsten cathode-arc plasma-weld pool interaction in the magnetically rotated or deflected gas tungsten arc welding configuration[J]. Journal of Manufacturing Processes, 2018, 32: 127 − 137.
  • Related Articles

    [1]WANG Jiajie, SONG Xiaoguo, WU Pengbo, HU Peipei, TENG Bin, HUANG Ruisheng, YU Jiuhao. Process, microstructures and mechanical properties of Al/Ti dissimilar metals with laser/laser-CMT hybrid welding-brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 54-60. DOI: 10.12073/j.hjxb.20220617003
    [2]ZHANG Zehua, LI Xiaoqiang, ZHU Dezhi, QU Shengguan, WANG Xuecheng. Effect of wire current on microstructure and properties of 7075-T6 aluminum alloy joint welded by double-wire pulsed cold metal transition method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 68-77. DOI: 10.12073/j.hjxb.20220703002
    [3]CHANG Jinghuan, CAO Rui, YAN Yingjie. Microstructure and properties of titanium alloy/stainless steel joint by cold metal transfer joining technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 44-51. DOI: 10.12073/j.hjxb.20210114001
    [4]XU Nan, BAO Yefeng, SONG Qining. Research on microstructure and mechanical properties of cold source assisted friction stir welded H70 brass joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 93-96. DOI: 10.12073/j.hjxb.2018390182
    [5]ZENG Chengzong, LIN Qiaoli, CAO Rui, CHEN Jianhong. Simulation of spreading of molten Al alloy on Q235 steel under the cold metal transfer condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 57-61.
    [6]ZHOU Yanlin, LIN Qiaoli, CAO Rui, CHEN Jianhong. Wetting behavior of molten 4043 aluminum alloy on different steel plates in cold metal transfer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 115-118.
    [7]WANG Cen, CAO Rui, LIN Qiaoli, WANG Qing, DONG Chuang, CHEN Jianhong. Numerical simulation on temperature distribution of cold metal transfer joining magnesium to titanium dissimilar metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 17-20.
    [8]CAO Rui, HUANG Qian, ZHU Haixia, CHEN Jianhong. Analysis on cold metal transfer spot plug welding process of aluminum alloys for automobile body[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 15-18.
    [9]CAO Rui, FENG Zhen, CHEN Jianhong, JING Min. Microstructure, bonding mechanism and corrosion property of titanium TA2/copper T2 welded joint by cold metal transfer technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 39-42.
    [10]LIU Yibo, SUN Qingjie, JIANG Yunlu, WU Laijun. Rapid prototyping process based on cold metal transfer arc welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 1-4.
  • Cited by

    Periodical cited type(6)

    1. 田启超,赵阳,杨明,马宏昊,沈兆武,任志强. Al_(0.1)CoCrFeNi高熵合金/Cu爆炸焊接界面结构. 机械制造文摘(焊接分册). 2023(04): 1-7+14 .
    2. 贺艳明,赵小强,郎红专,钟丰平,闾川阳,刘勇,郑文健,马英鹤,李华鑫,任森栋,杨建国. 先进镁合金材料钎焊技术进展. 中国有色金属学报. 2023(11): 3662-3688 .
    3. 赵菲,王康,马立峰. 三层复合板铝/镁合金/铝FSW接头的微观组织与抗拉强度. 稀有金属材料与工程. 2022(03): 1047-1054 .
    4. 王艳,熊志林,李强,申轶颖,胡智洋,宋林山. 镁/铝异种金属超声波焊接接头性能与界面反应. 兵器材料科学与工程. 2022(04): 85-90 .
    5. 左睿昊,景栋,孟令刚,郭倩,周秉文,耿立国,张兴国. 铝镁微叠层复合材料制备与组织性能研究. 特种铸造及有色合金. 2022(08): 1027-1032 .
    6. 田启超,赵阳,杨明,马宏昊,沈兆武,任志强. Al_(0.1)CoCrFeNi高熵合金/Cu爆炸焊接界面结构. 焊接学报. 2022(07): 36-42+115 . 本站查看

    Other cited types(5)

Catalog

    Article views (298) PDF downloads (56) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return