Advanced Search
HE Chao, CUI Shiming, LIU Yongjie, WANG Qingyuan. Effect of pore on super long fatigue life of aluminium alloywelded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 18-22.
Citation: HE Chao, CUI Shiming, LIU Yongjie, WANG Qingyuan. Effect of pore on super long fatigue life of aluminium alloywelded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 18-22.

Effect of pore on super long fatigue life of aluminium alloywelded joint

More Information
  • Received Date: April 23, 2013
  • In order to investigate the fatigue behavior and failure mechanism in super long life regime, ultrasonic fatigue tests were performed on 5052 aluminium alloy welded joint. The results show that the fatigue strength of welded joint descended about 73.3% as compared to the base metal with the same fatigue life. Fatigue failure occurred in the very high cycle fatigue regime. Fatigue crack initiated from the welding defects(pores) from the observation of SEM. To clarify the effect of pores on thecrack initiation and propagation of welded joint, finite element method was used to calculate the stress concentration and stress intensity factor around the pores. Finally, the characteristics of fatigue crack initiation and propagation with welding defects were discussed.
  • Related Articles

    [1]MAO Zhiwei, CHEN Bin, ZHOU Shaoling, XU Wei, WU Xun. Mathematical model of rotating arc sensor based on actual deposited metal of the weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 26-30. DOI: 10.12073/j.hjxb.2019400036
    [2]ZHANG Jing-hai, WEI Jin-shan, WANG Xiao-dong. Mathematical model of hydrogen escaping from deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 73-78.
    [3]YU Zhong hai. Mathematical model for automatic cladding of spherical shell cover[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 68-71.
    [4]BAI Zhi-fan, WANG Wei-ming, JIANG Zhi-hong, ZHANG Yi. LCL-type Resonant Arc Welding Power Supply and Its Steaty-state Mathematical Model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 80-83.
    [5]YU Sheng-fu, LI Zhi-yuan, ZHANG Guo-dong, SHI Zhong-kun. Heating Mathematical Model and Thermal Dynamics of Flux Cored Wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 66-69.
    [6]Ma Hongze, Jiang Lipei, Zhang Jiangying, Li Shuhuai. Mathematical Model of Spot Welding for Quality Control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (4): 210-215.
    [7]Cao Zhenning, Wu Chuansong, Wu Lin. Mathematical Modeling of TIG Molten Pool with Full-penetration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (1): 62-70.
    [8]Gang Tie, Takayoshi OHJI. On-line idcntification of mathematical model parameters and selection of optimized welding parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (4): 225-230.
    [9]Zhao Pengsheng, Wang Yaowen. Distribution model for current density of plasma welding arcs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 182-188.
    [10]Gang Tie, Takayoshi Ohji. MATHEMATICAL MODEL OF MOLTIEN POOL AND ON-LINE OPTIMIZATION OF WELDING PARAMETERS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 119-125.

Catalog

    Article views (307) PDF downloads (210) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return