Advanced Search
MAO Zhiwei, CHEN Bin, ZHOU Shaoling, XU Wei, WU Xun. Mathematical model of rotating arc sensor based on actual deposited metal of the weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 26-30. DOI: 10.12073/j.hjxb.2019400036
Citation: MAO Zhiwei, CHEN Bin, ZHOU Shaoling, XU Wei, WU Xun. Mathematical model of rotating arc sensor based on actual deposited metal of the weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 26-30. DOI: 10.12073/j.hjxb.2019400036

Mathematical model of rotating arc sensor based on actual deposited metal of the weld pool

More Information
  • Received Date: September 20, 2017
  • Mathematical model of rotating arc welding system is the theoretical basis of obtaining better welding quality, rotating arc signal processing and welding seam deviation extraction. The shape of weld pool has a great effect on the length of welding arc, thus affecting the accuracy of the mathematical model. Using double line structured-light vision sensor scanned the weld shape of weld ending stage and then reconstructed three-dimensional deposited metal shape of weld pool shape, selecting the simplex method to solve the length of welding arc. On this basis, the mathematical model of the rotating arc welding system and simulation model is established. The results showed that compared with the mathematical model based on triangular cone weld pool shape, the one based on the shape of the actual deposited metal of weld pool can effectively eliminate the current signal error caused by the deformation of the work piece during the welding process and decrease the error of weld rotation and weld seam deviation identification, thus the mathematical model of rotating arc welding is improved.
  • Wu Shide, Liao Baojian, Pan Jiluan. High speed rotating arc sensor[J]. Transactions of the China Welding Institution, 1997, 18(1): 63 − 68
    Halmoy E. Simulation of rotational arc sensing in gas metal arc welding[J]. Science and Technology of Welding and Joining, 1999, 4(6): 347 − 351.
    Shi Yonghua, Wang Guorong, YOO Won-Sang, et al. Mathematical model of high speed rotational arc sensor[J]. Journal of Mechanical Engineering, 2007, 43(11): 217 − 223
    Pan J L. Arc sensing system for automatic weld seam tracking(Ⅰ)-mathematic model[J]. Science in China(Series E: Technological Sciences), 2001, 44(03): 252 − 257.
    Shi Yonghua, Zeng Shengsong, Wang Guorong. Sensing signal pattern analysis of high-speed rotational arc in GMAW[J]. Transactions of the China Welding Institution, 2010, 31(6): 33 − 36
    吴世德, 廖宝剑, 潘际銮. 高速旋转电弧传感器[J]. 焊接学报, 1997, 18(1): 63 − 68
    Zhou Longzao, Liu Shunhong, Ding Dongping. Rapid prototyping technology based on three-dimensional welding deposition[J]. Electromachining & Mould, 2004, 39(4): 1 − 5
    Kim C H, Na S J. A study of an arc sensor model for gas metal arc welding with rotating arc - part 1: dynamic simulation of wire melting[J]. Proceedings of the Institution of Mechanical Engineers - Part B, London, 2001, 215(9): 1271 − 1279.
    Mao Zhiwei, Zhou Shaoling, Zhao Bin, et al. Welding torch position and seam orientation deviation based on two stripes laser vision sensing[J]. Transactions of the China Welding Institution, 2015, 36(2): 35 − 38
    Kim C H, Na S J. A study of an arc sensor model for gas metal arc welding with rotating arc-part 2: dynamic simulation of wire melting[J]. Proceedings of the Institution of Mechanical Engineers-Part B, London, 2001, 215(9): 1281 − 1288.
    石永华, 王国荣, YOO Won-Sang, 等. 高速旋转电弧传感器的数学模型[J]. 机械工程学报, 2007, 43(11): 217 − 223
    石永华, 曾盛松, 王国荣. GMAW焊高速旋转电弧传感信号特征分析[J]. 焊接学报, 2010, 31(6): 33 − 36
    周龙早, 刘顺洪, 丁冬平. 基于三维焊接熔敷的快速成形技术[J]. 电加工与模具, 2004, 39(4): 1 − 5
    毛志伟, 周少玲, 赵 滨, 等. 双线激光传感焊枪定位与焊缝走向识别[J]. 焊接学报, 2015, 36(2): 35 − 38
    毛志伟. 交叉式双线激光视觉传感焊枪高度实时识别系统及识别方法:中国, 201510050920.9[P]. 2015-02-02.
  • Related Articles

    [1]SHEN Kexin, ZHANG Sicong, ZHAO Yue, LI Quan, WAN Zhandong, WU Aiping. Microstructure evolution of 2195 Al-Li alloy friction stir welded joint and enhancing performance by laser shock peening[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240226002
    [2]QIN Feng, ZHANG Chunbo, ZHOU Jun, WU Yanquan, LIANG Wu, WU Ruizhi. Microstructure and properties of 5A06 aluminum alloy T-joints welded by stationary shoulder friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 56-60, 95. DOI: 10.12073/j.hjxb.20220201001
    [3]DAI Xiang, SHI Lei, WU Chuansong, JIANG Yuanning, GAO Song, FU Li. Microstructure and mechanical properties of 2195-T6 Al–Li alloy joint prepared by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 25-34. DOI: 10.12073/j.hjxb.20210524002
    [4]ZHANG Mandang, ZHAO Yunqiang, DONG Chunlin, TAN Jinhong, YI Yaoyong, WU Wei. Structure and properties of friction stir welding joint of Al-Li alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 71-76. DOI: 10.12073/j.hjxb.20201120002
    [5]WANG Lei, XU Xuezong, WANG Kehong, HUANG Yong, PENG Yong, YANG Dongqing. Microstructures and mechanical properties of fiber laser beam welded 7A52 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 28-31, 37. DOI: 10.12073/j.hjxb.20200518001
    [6]HAO Yunfei, MA Jianbo, BI Huangsheng, LI Chao, WANG Guoqing. Analysis of microstructure and mechanical properties of the aluminum alloy T-joint welded by stationary shoulder friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 48-54. DOI: 10.12073/j.hjxb.2019400180
    [7]HE Enguang, GONG Shuili, YANG Tao, CHEN Li. Microstructure and properties of 5A90 Al-Li alloy T-joints by laser welding with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 99-102.
    [8]ZHANG Hua, KONG Deyue, CHEN Xuefeng, CAO Jian, ZHAO Yanhua, HUANG Jihua. Study on friction stir welding of 2A97 Al-Li alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 41-44.
    [9]LIU Chang, PAN Qinglin, LIANG Wenjie. Microstructure and mechanical properties of argon arc welding joints of Al-Cu-Li alloy containing Sc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 73-76.
    [10]WANG Da-yong, FENG Ji-cai, XU Wei. Effect of heat treatment on microstructures and mechanical properties of Al-Li-Cu alloy TIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 23-25,50.
  • Cited by

    Periodical cited type(4)

    1. 陈静,姜云禄,陈怀宁. 深孔法测试Q345焊接试板热处理前后三维残余应力的可行性. 焊接. 2022(12): 25-29 .
    2. 蔡舒鹏,张永康. 基于APDL语言的本征应变法重构激光冲击强化后的残余应力场. 电加工与模具. 2021(05): 52-57 .
    3. 董曼淑,刘龙,董志波. 重型复杂结构件过渡槽焊接变形工艺研究. 机械制造文摘(焊接分册). 2020(02): 34-39 .
    4. 董志波,周守振,武继胜,方洪渊. 基于轮廓法与固有应变理论焊接纵向残余应力的三维重构. 中国科学:技术科学. 2020(07): 957-963 .

    Other cited types(2)

Catalog

    Article views (148) PDF downloads (3) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return