Citation: | ZHAO Pengcheng, WANG Lulu, LI Shujiang, WU Chuansong, SHI Ping'an. A heat source model for laser heat-conduction brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 13-16. |
[1] | LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002 |
[2] | SUN Jiahao, ZHANG Chaoyong, WU Jianzhao, ZHANG Shuaikun, ZHU Lei. Prediction of weld profile of 316L stainless steel based on generalized regression neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 40-47. DOI: 10.12073/j.hjxb.20210526003 |
[3] | LU Xuedong, WU Mingfang, CENG Yue, WANG Huan, SHEN Songpei. Numerical simuation of welding residual deformation in welded joints of marine steel plate by FEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 45-48. |
[4] | HE Hongwen, ZHAO Haiyan, NIU Wenchong, WANG Peng. A method to measure welding deformation of plate by three dimensional laser scanner[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 9-12. |
[5] | DENG Xin, WANG Chao, WEI Yanhong. Prediction system of mechanical properties of welded joints based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 109-112. |
[6] | BAI Shiwu, TONG Lige, LIU Fangming, WANG Li. Artificial neural network to predict toughness parameter CVN of welded joint of high strength pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 106-108,112. |
[7] | TONG Lige, BAI Shiwu, LIU Fangming. Prediction system of CTOD for high strength pipeline steel welded joint based on back propagation artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 96-98. |
[8] | XU Pei-quan, YANG De-xin, ZHAO Xiu-juan, LU Feng-gui, YAO Shun. Application of artificial neural network method in prediction of bend strength of welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 41-45. |
[9] | YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45. |
[10] | WANG Zhe-chang, CHEN Huai-ning. Further Discussion on Two Problems of Welding Stress and Deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 69-72. |
1. |
张欣盟,高士康,李高辉,张海峰,周利,王苹. 6005A-T6铝合金双轴肩搅拌摩擦焊接头疲劳性能分析. 焊接学报. 2023(09): 30-36+130-131 .
![]() | |
2. |
米鹏,王瑞杰,杨庆鹤. 5083铝合金带吻接FSW接头疲劳强度分析. 机械科学与技术. 2021(03): 463-469 .
![]() | |
3. |
王池权,石亮,张祥春,刘志毅,邵成伟. 焊接缺陷对异种铝合金TIG对接接头疲劳行为的影响. 北京航空航天大学学报. 2021(07): 1505-1514 .
![]() | |
4. |
林浩,黄诗铭,史春元,李帅贞,韩晓辉. 基于国产焊丝的6005铝合金接头力学及耐腐蚀性能研究. 焊接技术. 2021(10): 69-73 .
![]() | |
5. |
王德升,王政红,王鹏云,张繁星,褚少旗,李利,谢述锋,冯岩. 国产与进口5083-H116铝合金微观组织及疲劳裂纹扩展速率研究. 材料开发与应用. 2021(05): 20-29 .
![]() | |
6. |
张铁浩,杨志斌,张志毅,张海军,史春元. MIG焊叠加对6A01-T5铝合金FSW焊接头组织及性能的影响. 焊接学报. 2020(09): 81-88+96+101 .
![]() | |
7. |
刘政军,张琨,刘长军. 铝合金振动焊接过程非线性时间序列模型分析. 焊接学报. 2019(03): 85-90+164-165 .
![]() | |
8. |
鲁二敬,钮旭晶,侯振国,金鹏,范东宇,郁志凯. 6082-T6铝合金大厚度板搅拌摩擦焊接头疲劳性能的研究. 金属加工(热加工). 2019(09): 8-10 .
![]() | |
9. |
张永红,林晨阳,漆中华,许志武. Sn基钎料的Zn含量对纯铝超声钎焊接头组织和性能的影响. 机械制造文摘(焊接分册). 2019(05): 23-28 .
![]() | |
10. |
金辉,何柏林. 超声冲击对铝合金MIG焊接接头超高周疲劳性能的影响. 兵器材料科学与工程. 2018(03): 95-100 .
![]() | |
11. |
胡雅楠,吴圣川,宋哲,付亚楠,袁清习. 激光复合焊接7020铝合金的疲劳性能及损伤行为. 中国激光. 2018(03): 198-207 .
![]() | |
12. |
邓彩艳,高仁,龚宝明,王东坡. 7050铝合金搅拌摩擦焊接头超高周疲劳性能. 焊接学报. 2018(11): 114-118+134 .
![]() | |
13. |
金玉花,霍仁杰,李常锋,王希靖. 转速对7055铝合金搅拌摩擦焊接头断裂特征的影响. 焊接学报. 2017(02): 10-13+18+1 .
![]() |