Advanced Search
LIU Zhengjun, CI Honggang, SU Yunhai, LIU Changjun. Effect of surfacing process parameters on microstructure and properties of surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 49-52.
Citation: LIU Zhengjun, CI Honggang, SU Yunhai, LIU Changjun. Effect of surfacing process parameters on microstructure and properties of surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 49-52.

Effect of surfacing process parameters on microstructure and properties of surfacing layer

More Information
  • Received Date: May 18, 2009
  • In order to refine the structure of deposited metal and control the morphology and distribution of hard phase in surfacing deposit, DC transverse magnetic field was applied to the carbon arc surfacing of Cr-B-Ni-V iron based alloy system.The influence of magnetic intensity and surfacing speed on degree of hardness and wearing resistance was studied through analyzing the hardness, wearing and microstructures of the surfacing deposit.The results show that good match of magnetic field intensity and surfacing speed can improve the properties of surfacing deposit;the optimal values of surfacing deposit are 54.4 HRC and Δm=0.033 5 when magnetic field current is 3 A, surfacing current is 180 A and surfacing speed is 12 cm/min.
  • Related Articles

    [1]QIN Guoliang, MA Hong, WANG Shilu, ZHAO Yanhua, ZHU Ruican. Microstructure and properties of friction welded joint of aluminum alloy to alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 1-8. DOI: 10.12073/j.hjxb.20210103001
    [2]HE Diqiu, HU Lei, ZHAO Zhifeng, LAI Ruilin. Effect of ultrasonic power on microstructure and properties of 2219-T351 aluminum alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 23-28. DOI: 10.12073/j.hjxb.20190115006
    [3]CHANG Chuanchuan, ZHANG Tiancang, LI Ju, LIU Jianjun. Microstructure and properties of linear friction welded joint of hyperoxia TC4/TC17 dissimilar titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 109-114,120. DOI: 10.12073/j.hjxb.2019400322
    [4]CHEN Shujin, LU Limei, LU Sheng, WANG Yunpeng. Thermo-mechanical evolution of Cu-Cr-Zr alloy joint fabricated by continuous driving friction welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 69-74.
    [5]LANG Bo, ZHANG Tiancang, TAO Jun, GUO Delun. Formation mechanism of linear friction welded titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 37-40.
    [6]JI Yajuan, LIU Yanbing, ZHANG Tiancang, ZHANG Chuanchen. Structure and mechanical properties of TC4/TC17 linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 109-112.
    [7]JI Yajuan, LIU Yanbing, ZHANG Tiancang, ZHANG Chuanchen. Effect of amplitude on microstructures and representative element distribution in linear friction welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 101-104.
    [8]LANG Bo, ZHANG Tiancang, TAO Jun, GUO Delun. Microstructure in linear friction welded dissimillar titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 105-108,112.
    [9]ZHANG Chuanchen, HUANG Jihua, ZHANG Tiancang, JI Yajuan. Investigation on microstructure and microhardness of linear friction welded joints of dissimilar titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 97-100.
    [10]ZHANG Tiancang, LI Jing, JI Yajuan, SUN Chengbin. Structure and mechanical properties of TC4 linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 53-56.

Catalog

    Article views (280) PDF downloads (70) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return