Advanced Search
QIN Guoliang, MA Hong, WANG Shilu, ZHAO Yanhua, ZHU Ruican. Microstructure and properties of friction welded joint of aluminum alloy to alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 1-8. DOI: 10.12073/j.hjxb.20210103001
Citation: QIN Guoliang, MA Hong, WANG Shilu, ZHAO Yanhua, ZHU Ruican. Microstructure and properties of friction welded joint of aluminum alloy to alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 1-8. DOI: 10.12073/j.hjxb.20210103001

Microstructure and properties of friction welded joint of aluminum alloy to alloy steel

More Information
  • Received Date: January 02, 2021
  • Available Online: August 30, 2021
  • On account of the urgent demand of lightweight drilling pipe, a composite structure made by 7075-T6 aluminum alloy and 37CrMnMo alloy steel was welded by continuous-drive friction welding method so as to offer the optimized manufacturing process and theoretical support for manufacturing lightweight Al/steel composite drilling pipe. The effects of welding parameters on the appearance, microstructure and mechanical properties of the joint were investigated. The results indicated that the fine grain zone with texture <111> in radius direction appeared at the weld interface due to the fully dynamic recrystallization in the Al side under sufficient heat and pressure, which results in the grain-boundary strengthening under the coupling effect of force and heat. In the heat affected zone, the original fiber texture <111> and <110> in the base metal disappeared with random orientations appeared as a result. The inhomogeneous distribution of heat and force along the radius direction led to intermetallic compounds (IMCs) free zone existing at central zone of weld interface, while a sub-micron sized IMCs layer formed at 1/2 radius zone. Following by the dissolution of second phase particles, the micro-hardness along longitudinal section tended to reach a dynamic equilibrium trend after experiencing a reduction and ascending process at weld interface. The bonding mechanism was in a combined form of mechanical and metallurgical joining, with the highest strength achieved 240 MPa. The relatively smooth fracture appearance at central zone manifested itself a weaker bonding, which revealed that a metallurgical reaction at such zone is highly desired by controlling the friction process in order to further enhance the joint property.
  • Gelfgat M Y, Basovich V S, Adelman A. Aluminum alloy tubules for the oil and gas industry[J]. World Oil, 2006, 227(7): 45 − 51.
    孙永辉. 铝合金钻杆与钢接头冷组装试验研究[D]. 长春: 吉林大学, 2016.

    Sun Yonghui. Interference cold assembling of aluminum alloy drill pipe body with steel tool joint[D]. Changchun: Jilin University, 2016.
    Ju Chuan, Gong Wenbiao, Liu Wei, et al. Microstructure and mechanical/conductivity properties of pure copper joint welded by friction stir welding[J]. China Welding, 2020, 29(3): 26 − 32.
    矫洪智. 摩擦焊技术在汽车制造业中的应用与探讨[J]. 汽车工艺与材料, 2012(5): 14 − 18. doi: 10.3969/j.issn.1003-8817.2012.05.006

    Jiao Hongzhi. The application and discussion of friction welding in automotive industries[J]. Automobile Technology & Material, 2012(5): 14 − 18. doi: 10.3969/j.issn.1003-8817.2012.05.006
    周军, 秦国梁, 齐秀滨, 等. 石油钻杆形变热处理摩擦焊工艺[J]. 焊接学报, 2011, 32(8): 1 − 4.

    Zhou Jun, Qin Guoliang, Qi Xiubin, et al. Friction welding process with thermomechanical heat treatment for oil drill pipe[J]. Transactions of the China Welding Institution, 2011, 32(8): 1 − 4.
    Ma H, Qin G L, Geng P H, et al. Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding[J]. Materials & Design, 2015, 86: 587 − 597.
    Fukumoto S, Tsubakino H, Okita K, et al. Amorphization by friction welding between 5052 aluminum alloy and 304 stainless steel[J]. Scripta Materialia, 2000, 42(8): 807 − 812. doi: 10.1016/S1359-6462(00)00299-2
    Sahin A Z, Yilbas B S, Al-Garni A Z. Friction welding of Al-Al, Al-steel, and steel-steel samples[J]. Journal of Materials Engineering & Performance, 1996, 5(1): 89 − 99.
    秦国梁, 马宏, 耿培皓, 等. 45钢/304不锈钢连续驱动摩擦焊接工艺[J]. 焊接学报, 2015, 36(8): 1 − 4.

    Qin Guoliang, Ma Hong, Geng Peihao, et al. Continuous-drive friction welding of 45 steel to 304 stainless steel[J]. Transactions of the China Welding Institution, 2015, 36(8): 1 − 4.
    王世路. 铝/钢异种金属惯性摩擦焊接头组织与性能[D]. 济南: 山东大学, 2020.

    Wang Shilu. Microstructures and properties of inertia friction welded joints of aluminum alloy to stainless steel[D]. Jinan: Shandong University, 2020.
    Dong H, Li Y, Li P, et al. Inhomogeneous microstructure and mechanical properties of rotary friction welded joints between 5052 aluminum alloy and 304 stainless steel[J]. Journal of Materials Processing Technology, 2019, 272: 17 − 27. doi: 10.1016/j.jmatprotec.2019.04.039
    Ma H, Qin G, Geng P, et al. Microstructural characterisation and corrosion behaviour of aluminium alloy/steel hybrid structure produced by friction welding[J]. Journal of Manufacturing Processes, 2021, 61: 349 − 356. doi: 10.1016/j.jmapro.2020.11.014
    Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2017, 25: 116 − 125. doi: 10.1016/j.jmapro.2016.12.001
    Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2017, 26: 178 − 187. doi: 10.1016/j.jmapro.2017.02.008
    张昌青, 刘雄波, 吕广明, 等. 铝/钢连续驱动摩擦焊焊接扭矩和能量输入特征[J]. 机械工程学报, 2018, 54(2): 110 − 116. doi: 10.3901/JME.2018.02.110

    Zhang Changqing, Liu Xiongbo, Lü Guangming, et al. Friction torque and heat input characteristics during continuous drive friction welding of aluminum to steel[J]. Chinese Journal of Mechanical Engineering, 2018, 54(2): 110 − 116. doi: 10.3901/JME.2018.02.110
    Tung D J, Mahaffey D W, Senkov O N, et al. Transient behaviour of torque and process efficiency during inertia friction welding[J]. Science and Technology of Welding and Joining, 2019, 24(2): 136 − 147. doi: 10.1080/13621718.2018.1491377
    Fukumoto S, Tsubakino H, Okita K, et al. Static joint strength of friction welded joint between aluminium alloys and stainless steel[J]. Welding International, 2000, 14(2): 89 − 93. doi: 10.1080/09507110009549145
    Alves E P, Piorino N F, An C Y. Welding of AA1050 Aluminum with AISI 304 stainless steel by rotary friction welding process[J]. Journal of Aerospace Technology and Management, 2010, 2(3): 301 − 306. doi: 10.5028/jatm.2010.02037110
    Seli H, Ismail A I M, Rachman E, et al. Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium[J]. Journal of Materials Processing Technology, 2010, 210(9): 1209 − 1216.
    Jin F, Li J, Du Y, et al. Numerical simulation based upon friction coefficient model on thermo-mechanical coupling in rotary friction welding corresponding with corona-bond evolution[J]. Journal of Manufacturing Processes, 2019, 45: 595 − 602.
    Zhang D, Qin G, Ma H, et al. Non-uniformity of intermetallic compounds and properties in inertia friction welded joints of 2A14 Al alloy to 304 stainless steel[J]. Journal of Manufacturing Processes, 2021, 68: 834 − 842.
    Zhang D, Qin G, Geng P, et al. Study of plastic flow on intermetallic compounds formation in friction welding of aluminum alloy to stainless steel[J]. Journal of Manufacturing Processes, 2021, 64(31): 20 − 29.
  • Related Articles

    [1]XIA Weisheng, GONG Fujian, YANG Rongguo, WAN Chaizhi, YANG Yunzhen. Apparent defect recognition of gas metal arc welding based on infrared vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 69-73. DOI: 10.12073/j.hjxb.20190928001
    [2]XU Min, XUE Jiaxiang, HUANG Wenjin. Research on low heat input pulsed MIG welding process for aluminum alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 110-114.
    [3]REN Fushen, YANG Shuai, LIU Jia, CHEN Shujun. Low heat input push-pull feeder CO2 welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 75-78.
    [4]ZHANG Tao, GUI Weihua, WANG Suiping. Direct model reference adaptive control of gas metal arc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 25-27.
    [5]LI Fang, HUA Xueming, WANG Weibin, WU Yixiong. Modeling of droplet transfer electrical characteristics in pulsed gas melted arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 97-100.
    [6]ZHANG Fuju, WANG Yan, ZHANG Guodong, Wang Yutao. Ultra-fine grain steel welded joint behaiour of CO2 arc welding under low heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 77-80.
    [7]ZHANG Han-peng, HUANG Peng-fei, YIN Shu-yan, BAI Li-lai, ZHAO Yu-jiang. Control system for new low heat input digital welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 89-92.
    [8]LU Zhen-yang, HUANG Peng-fei, ZHANG Han-peng, YIN Shu-yan. Pulsed gas metal arc welding of thin plate with high speed[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 47-50.
    [9]YAN Zhi-hong, ZHANG Guang-jun, QIU Mei-zhen, GAO Hong-ming, WU Lin. Monitoring and processing of weld pool images in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 37-40.
    [10]WANG fang, HOU Wen-kao, HU S Jack. Research on simulation systems of MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 35-39.
  • Cited by

    Periodical cited type(2)

    1. 曹润平,韩永全,刘晓虎,洪海涛,韩蛟. 稀土铈对电弧及熔滴过渡行为的影响. 焊接学报. 2025(01): 95-102 . 本站查看
    2. 刘景武,张蕾,杜义,孙磊,王杏华,张晓,董星. 785 MPa及以上高强钢焊接材料的研发现状与展望. 精密成形工程. 2025(02): 62-75 .

    Other cited types(0)

Catalog

    Article views (630) PDF downloads (103) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return