Citation: | QIN Guoliang, MA Hong, WANG Shilu, ZHAO Yanhua, ZHU Ruican. Microstructure and properties of friction welded joint of aluminum alloy to alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 1-8. DOI: 10.12073/j.hjxb.20210103001 |
Gelfgat M Y, Basovich V S, Adelman A. Aluminum alloy tubules for the oil and gas industry[J]. World Oil, 2006, 227(7): 45 − 51.
|
孙永辉. 铝合金钻杆与钢接头冷组装试验研究[D]. 长春: 吉林大学, 2016.
Sun Yonghui. Interference cold assembling of aluminum alloy drill pipe body with steel tool joint[D]. Changchun: Jilin University, 2016.
|
Ju Chuan, Gong Wenbiao, Liu Wei, et al. Microstructure and mechanical/conductivity properties of pure copper joint welded by friction stir welding[J]. China Welding, 2020, 29(3): 26 − 32.
|
矫洪智. 摩擦焊技术在汽车制造业中的应用与探讨[J]. 汽车工艺与材料, 2012(5): 14 − 18. doi: 10.3969/j.issn.1003-8817.2012.05.006
Jiao Hongzhi. The application and discussion of friction welding in automotive industries[J]. Automobile Technology & Material, 2012(5): 14 − 18. doi: 10.3969/j.issn.1003-8817.2012.05.006
|
周军, 秦国梁, 齐秀滨, 等. 石油钻杆形变热处理摩擦焊工艺[J]. 焊接学报, 2011, 32(8): 1 − 4.
Zhou Jun, Qin Guoliang, Qi Xiubin, et al. Friction welding process with thermomechanical heat treatment for oil drill pipe[J]. Transactions of the China Welding Institution, 2011, 32(8): 1 − 4.
|
Ma H, Qin G L, Geng P H, et al. Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding[J]. Materials & Design, 2015, 86: 587 − 597.
|
Fukumoto S, Tsubakino H, Okita K, et al. Amorphization by friction welding between 5052 aluminum alloy and 304 stainless steel[J]. Scripta Materialia, 2000, 42(8): 807 − 812. doi: 10.1016/S1359-6462(00)00299-2
|
Sahin A Z, Yilbas B S, Al-Garni A Z. Friction welding of Al-Al, Al-steel, and steel-steel samples[J]. Journal of Materials Engineering & Performance, 1996, 5(1): 89 − 99.
|
秦国梁, 马宏, 耿培皓, 等. 45钢/304不锈钢连续驱动摩擦焊接工艺[J]. 焊接学报, 2015, 36(8): 1 − 4.
Qin Guoliang, Ma Hong, Geng Peihao, et al. Continuous-drive friction welding of 45 steel to 304 stainless steel[J]. Transactions of the China Welding Institution, 2015, 36(8): 1 − 4.
|
王世路. 铝/钢异种金属惯性摩擦焊接头组织与性能[D]. 济南: 山东大学, 2020.
Wang Shilu. Microstructures and properties of inertia friction welded joints of aluminum alloy to stainless steel[D]. Jinan: Shandong University, 2020.
|
Dong H, Li Y, Li P, et al. Inhomogeneous microstructure and mechanical properties of rotary friction welded joints between 5052 aluminum alloy and 304 stainless steel[J]. Journal of Materials Processing Technology, 2019, 272: 17 − 27. doi: 10.1016/j.jmatprotec.2019.04.039
|
Ma H, Qin G, Geng P, et al. Microstructural characterisation and corrosion behaviour of aluminium alloy/steel hybrid structure produced by friction welding[J]. Journal of Manufacturing Processes, 2021, 61: 349 − 356. doi: 10.1016/j.jmapro.2020.11.014
|
Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2017, 25: 116 − 125. doi: 10.1016/j.jmapro.2016.12.001
|
Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2017, 26: 178 − 187. doi: 10.1016/j.jmapro.2017.02.008
|
张昌青, 刘雄波, 吕广明, 等. 铝/钢连续驱动摩擦焊焊接扭矩和能量输入特征[J]. 机械工程学报, 2018, 54(2): 110 − 116. doi: 10.3901/JME.2018.02.110
Zhang Changqing, Liu Xiongbo, Lü Guangming, et al. Friction torque and heat input characteristics during continuous drive friction welding of aluminum to steel[J]. Chinese Journal of Mechanical Engineering, 2018, 54(2): 110 − 116. doi: 10.3901/JME.2018.02.110
|
Tung D J, Mahaffey D W, Senkov O N, et al. Transient behaviour of torque and process efficiency during inertia friction welding[J]. Science and Technology of Welding and Joining, 2019, 24(2): 136 − 147. doi: 10.1080/13621718.2018.1491377
|
Fukumoto S, Tsubakino H, Okita K, et al. Static joint strength of friction welded joint between aluminium alloys and stainless steel[J]. Welding International, 2000, 14(2): 89 − 93. doi: 10.1080/09507110009549145
|
Alves E P, Piorino N F, An C Y. Welding of AA1050 Aluminum with AISI 304 stainless steel by rotary friction welding process[J]. Journal of Aerospace Technology and Management, 2010, 2(3): 301 − 306. doi: 10.5028/jatm.2010.02037110
|
Seli H, Ismail A I M, Rachman E, et al. Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium[J]. Journal of Materials Processing Technology, 2010, 210(9): 1209 − 1216.
|
Jin F, Li J, Du Y, et al. Numerical simulation based upon friction coefficient model on thermo-mechanical coupling in rotary friction welding corresponding with corona-bond evolution[J]. Journal of Manufacturing Processes, 2019, 45: 595 − 602.
|
Zhang D, Qin G, Ma H, et al. Non-uniformity of intermetallic compounds and properties in inertia friction welded joints of 2A14 Al alloy to 304 stainless steel[J]. Journal of Manufacturing Processes, 2021, 68: 834 − 842.
|
Zhang D, Qin G, Geng P, et al. Study of plastic flow on intermetallic compounds formation in friction welding of aluminum alloy to stainless steel[J]. Journal of Manufacturing Processes, 2021, 64(31): 20 − 29.
|
[1] | XIA Weisheng, GONG Fujian, YANG Rongguo, WAN Chaizhi, YANG Yunzhen. Apparent defect recognition of gas metal arc welding based on infrared vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 69-73. DOI: 10.12073/j.hjxb.20190928001 |
[2] | XU Min, XUE Jiaxiang, HUANG Wenjin. Research on low heat input pulsed MIG welding process for aluminum alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 110-114. |
[3] | REN Fushen, YANG Shuai, LIU Jia, CHEN Shujun. Low heat input push-pull feeder CO2 welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 75-78. |
[4] | ZHANG Tao, GUI Weihua, WANG Suiping. Direct model reference adaptive control of gas metal arc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 25-27. |
[5] | LI Fang, HUA Xueming, WANG Weibin, WU Yixiong. Modeling of droplet transfer electrical characteristics in pulsed gas melted arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 97-100. |
[6] | ZHANG Fuju, WANG Yan, ZHANG Guodong, Wang Yutao. Ultra-fine grain steel welded joint behaiour of CO2 arc welding under low heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 77-80. |
[7] | ZHANG Han-peng, HUANG Peng-fei, YIN Shu-yan, BAI Li-lai, ZHAO Yu-jiang. Control system for new low heat input digital welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 89-92. |
[8] | LU Zhen-yang, HUANG Peng-fei, ZHANG Han-peng, YIN Shu-yan. Pulsed gas metal arc welding of thin plate with high speed[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 47-50. |
[9] | YAN Zhi-hong, ZHANG Guang-jun, QIU Mei-zhen, GAO Hong-ming, WU Lin. Monitoring and processing of weld pool images in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 37-40. |
[10] | WANG fang, HOU Wen-kao, HU S Jack. Research on simulation systems of MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 35-39. |
1. |
曹润平,韩永全,刘晓虎,洪海涛,韩蛟. 稀土铈对电弧及熔滴过渡行为的影响. 焊接学报. 2025(01): 95-102 .
![]() | |
2. |
刘景武,张蕾,杜义,孙磊,王杏华,张晓,董星. 785 MPa及以上高强钢焊接材料的研发现状与展望. 精密成形工程. 2025(02): 62-75 .
![]() |