Advanced Search
GUO Chunhuan, CHI Zhidong, FU Xueman, LIU Ruitang. Difference of impact absorbed energy between butt weld metal and deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 99-102.
Citation: GUO Chunhuan, CHI Zhidong, FU Xueman, LIU Ruitang. Difference of impact absorbed energy between butt weld metal and deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 99-102.

Difference of impact absorbed energy between butt weld metal and deposited metal

More Information
  • Received Date: August 03, 2008
  • The ductile-brittle transition temperature,chemical composition,microstructure and fracture of welded metal are investigated to discuss the difference of impact absorbed energy between butt weld and deposited metal.The results indicate that the ductile-brittle transition behavior of the butt weld metal is different from that of the deposited metal,and the impact absorbed energy of the butt weld metal is lower than that of deposited metal under the same temperature.The increase of carbon content and the decrease of manganese content make the ductile-brittle transition temperature of butt weld metal increase.The difference of welding bead distribution between butt welding and deposition welding will cause the content of troostitic structure in butt weld metal higher than that of deposited metal,and the crack in butt weld metal is formed easily.The crack stability extend distance of the butt weld metal is shorter than that of the deposited metal.
  • Related Articles

    [1]LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065
    [2]SUN Jiamin, CAI Jianpeng, YE Yanhong, Deng Dean. Numerical simulation of electro slag welding temperature field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 93-96.
    [3]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [4]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [5]LUO Yi, LIU Jinhe, YE Hong, YAN Zhonglin, SHEN Bin. Numerical simulation on temperature field of electron beam welding of AZ61 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 73-76.
    [6]ZHANG Huajun, ZHANG Guangjun, CAI Chunbo, WANG Junheng, WU Lin. Numerical simulation on temperature field of dynamic welding processing with weaving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 69-72,76.
    [7]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [8]WANG Xi-jing, HAN Xiao-hui, Guo Rui-jie, LI Jing. Numerical simulation of temperature field in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 17-20.
    [9]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59.
    [10]Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204.
  • Cited by

    Periodical cited type(2)

    1. 付伟,陈斌,宋晓国,王怀琎,胡胜鹏,卞红. 保温时间对BNi-2非晶钎料钎焊1Cr18Ni9Ti不锈钢接头组织和性能的影响. 火箭推进. 2024(01): 147-153 .
    2. 李红,栗卓新,巴凌志,邸新杰. 中国绿色焊接材料的现状和进展. 金属加工(热加工). 2020(10): 19-23 .

    Other cited types(2)

Catalog

    Article views (159) PDF downloads (89) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return