Advanced Search
ZHANG Huajun, ZHANG Guangjun, CAI Chunbo, WANG Junheng, WU Lin. Numerical simulation on temperature field of dynamic welding processing with weaving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 69-72,76.
Citation: ZHANG Huajun, ZHANG Guangjun, CAI Chunbo, WANG Junheng, WU Lin. Numerical simulation on temperature field of dynamic welding processing with weaving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 69-72,76.

Numerical simulation on temperature field of dynamic welding processing with weaving

More Information
  • Received Date: December 24, 2006
  • Numerical simulation the temperature field of welding with weaving widely adopted was numerically simulated. Heat source model of dynamic weaving arc was developed based on the classical double ellipsoid heat source model according to the character of velocity and direction variation of welding with weaving. Three dimension numerical model of welding with weaving was developed by MARC.MSC software.To verify the calculated results, the temperature was measured by the thermo-couple and the simulated curve agrees approximately with experiment data.Melten pool evolution, transient temperature and peak temperature were determined. Comparing with the results of the welding without weaving, a little peak appears during heating and cooling.Melten pool was multiple heated and cooled and its peak temperature decreased with increasing of weaving velocity.
  • Related Articles

    [1]BAO Liangliang, WANG Yong, ZHANG Hongjie, XU Liang, HAN Tao. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 26-33. DOI: 10.12073/j.hjxb.20201207002
    [2]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [3]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [4]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [5]WANG Zheng, GUI Chibin, CHEN Wenjun. Numerical analysis of hydrogen traps thermal desorption in weld thermal cycle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 100-104.
    [6]LI Xiaoquan, TENG Yalan, CHU Yajie, YANG Zonghui. Influence of welding thermal cycle on micro-structural brittleness of T92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 9-12.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [8]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
    [9]XU Xue-li, XIN Xi-xian, SHI Kai, ZHOU Yong. Influence of welding thermal cycle on toughness and microstructure in grain-coarsening region of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 69-72.
    [10]Yin Shike, Wang Yishan, Guo Huaili. Influnce of weld thermal cycle on properties of 10Ni5CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (3): 147-153.

Catalog

    Article views (243) PDF downloads (66) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return