Advanced Search
LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065
Citation: LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065

Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping

More Information
  • Received Date: August 25, 2016
  • The forming quality, microstructures and corresponding forming defects in three-dimensional metal welding deposition are directly affected by the waiting time between layers because of the overlapping thermal cycles. Finite element models of single pass multilayer linear round-trip deposition based on SYSWELD solver were established. And experiments were conducted to verify the results. The results showed that the complex temperature field and thermal cycles of the welding deposition prototyping could be obtained accurately by numerical simulation method. As the layers increased, the heat accumulated gradually. Heat affected zone in the rear area of heat source enlarged constantly. Thus the waiting time between layers needed to be set. When the waiting time was greater than 30 s, the weld zone experienced a significant temperature cycle, and the forming quality was better. The microstructure was more uniform and fine with the increasement of the waiting time.
  • 单雪海, 周建平, 许 燕. 金属快速成型技术的研究进展[J]. 机床与液压, 2016, 44(7): 150-154.Shan Xuehai, Zhou Jianping, Xu Yan. Research review of metal rapid prototyping technology[J]. Machine Tool & Hydraulics, 2016, 44(7): 150-154.[2] 方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2013.[3] 武传松. 焊接热过程与熔池形态[M]. 北京: 机械工业出版社, 2007.[4] 乌日开西·艾依提. 三维堆焊快速成形温度场的数值模拟[J]. 计算机应用与软件, 2009, 26(7): 263-264.Wurikaixi Aiyiti. Numerical simulation of rapid forming temperature fleld of 3D surfacing[J]. Computer Applications and Software, 2009, 26(7): 263-264.[5] 王家淳, 王希哲, 惠松骁. HE130合金激光焊接线能量与焦点位置研究[J]. 中国激光, 2003, 30(2): 179-184.Wang Jiachun, Wang Xizhe, Hui Songxiao. Research of linear heat input and laser focus position for laser welding HE130 titanium alloy[J]. Chinese Journal of Laser, 2003, 30(2): 179-184.[6] Zhao Huihui, Zhang Guangjun, Yin Ziqiang,et al. Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping[J]. Journal of Materials Processing Technology, 2012, 212(1): 276-285.[7] Chew Youxiang, Pang John Hock Lye, Bi Guijun,et al. Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads[J]. Journal of Materials Processing Technology, 2015, 224: 89-101.[8] Meng Xiangmeng, Qin Guoliang, Bai Xiaoyang,et al. Numerical analysis of undercut defect mechanism in high speed gas tungsten arc welding[J]. Journal of Materials Processing Technology, 2016, 236: 225-234.[9] 杨 帅, 彭 云, 张晓牧, 等. 热输入对C300接头温度场及焊缝胞晶组织的影响[J]. 焊接学报, 2015, 36(10): 12-16.Yang Shuai, Peng Yun, Zhang Xiaomu,et al. Influence of heat input on welding temperature fields andcellular microstructure of C300 welded joints[J]. Transactions of the China Welding Institution, 2015, 36(10): 12-16.[10] 赵慧慧, 张广军, 范 庆, 等. 基于焊接的多道单层再制造熔覆层组织及性能[J]. 焊接学报, 2011, 32(2): 45-48.Zhao Huihui, Zhang Guangjun, Fan Qing,et al. Microstructure and performances of multi-pass single-layer weld-based remanufacturing component[J]. Transactions of the China Welding Institution, 2011, 32(2): 45-48.[11] 李智钟, 周建平, 许 燕, 等. 基于Sysweld的T形管焊接件温度及应力应变场数值模拟分析[J]. 焊接学报, 2016, 37(7): 77-80.Li Zhizhong, Zhou Jianping, Xu Yan,et al. Numerical simulation anslysis on T-shaped pipe weldments temperature and stress-strain field based on Sysweld[J]. Transactions of the China Welding Institution, 2016, 37(7): 77-80.
  • Related Articles

    [1]YE Jiabao, LI Xiaohong, DENG Yunhua, XIE Zhiyi, WEN Yanzhen. Microstructure and properties of vacuum brazing interface of TiBw/TA15 titanium matrix composites[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 111-119. DOI: 10.12073/j.hjxb.20220811001
    [2]GUO Min, LEI Yuzhen, ZHAO Jian, SONG Xiaoguo, YU Zhishui, SHI Mingxiao. Interfacial microstructure and mechanical property of Ti60 and TC4 joint brazed with Cu75Pt filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 40-44. DOI: 10.12073/j.hjxb.20210918001
    [3]LONG Fei, SHI Qingyu, LU Quanbin, LIN Tiesong, HE Peng. Effect of Cr on properties of TZM alloy joints brazed with Mo-45Ni brazing filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 55-61. DOI: 10.12073/j.hjxb.20210329001
    [4]BIAN Hong1, TIAN Xiao2, FENG Jicai1, GAO Feng1, HU Shengpeng1. Interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 33-36,68. DOI: 10.12073/j.hjxb.2018390117
    [5]LIU Duo, NIU Hongwei, ZHAO Yu, SONG Xiaoguo, FENG Jicai, ZHAO Hongyun. Research on microstructure and mechanical properties of Cf/LAS composite brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 105-108.
    [6]CHEN Sijie, WEI Mingqiang, ZHAO Pifeng. Study on microstructure and property of aluminum matrix composites SiCP/Al6063 vacuum brazing joint with different holding time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 87-90.
    [7]FENG Guangjie, LI Zhuoran, Xu Kai, LIU Wenbo. Interface microstructure and mechanism of SiC ceramic vacuum brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 13-16.
    [8]WU Na, LI Yajiang, WANG Juan. Microstructure and properties of vacuum brazed joint between super-Ni/NiCr laminated composite and Cr18-Ni8 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 41-44.
    [9]HE Peng, YANG Xiujuan, FENG Jicai, LIU Hong. Effects of holding time on interface structure and bonding strength of brazed joint of hydrogenated TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 1-4.
    [10]LIANG Ning, SHENG Yifu. Influence of active element Mg on joint properties of aluminum alloy vacuum brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 61-64.

Catalog

    Article views (657) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return