Advanced Search
YAO Ping, LI Wenqiang, CHEN Wei, HE Riheng, ZHANG Peimei, ZHANG Guangchao. Prediction of weld size prediction based on Whale Optimization Algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 133-139. DOI: 10.12073/j.hjxb.20240701001
Citation: YAO Ping, LI Wenqiang, CHEN Wei, HE Riheng, ZHANG Peimei, ZHANG Guangchao. Prediction of weld size prediction based on Whale Optimization Algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 133-139. DOI: 10.12073/j.hjxb.20240701001

Prediction of weld size prediction based on Whale Optimization Algorithm

More Information
  • Received Date: June 30, 2024
  • Available Online: November 14, 2024
  • In the robotic arc welding manufacturing process, accurate prediction of weld seam size is important for controlling the quality of weld formation. In this study, a prediction model fusing whale optimization algorithm (WOA) and deep belief network (DBN), referred to as WOA-DBN, is proposed, which constructs a prediction model of weld size for arc welding manufacturing, using current, frequency, duty cycle, and welding speed as the input parameters. Welding seam size prediction model. In order to improve the search efficiency of the algorithm, enhance the convergence performance and avoid falling into the local optimal solution, this paper introduces the strategies of chaotic inverse learning initialization population, nonlinear convergence factor, as well as the simulated annealing operation and adaptive mutation perturbation, etc., and establishes a deep belief network model optimized by the chaotic whale optimization algorithm, i.e., AAMCWOA-DBN. Through experimental comparison, the AAMCWOA-DBN model outperforms the traditional WOA-DBN model in terms of prediction accuracy and performance metrics, the MAPE of the fused wide forecast is only 1.85% and the MAPE of the remaining high forecast is only 0.47%. This study utilizes artificial intelligence algorithms to predict the weld seam size of arc welding manufacturing, which provides new research perspectives and methods for the intelligent control of weld shaping and weld quality, and is expected to be applied in related fields.

  • [1]
    石玗, 朱珍文, 张刚, 等. 金属电弧增材成形控制关键技术及研究现状[J]. 材料导报, 2022, 36(12): 135 − 142. doi: 10.11896/cldb.20090337

    Shi Yu, Zhu Zhenwen, Zhang Gang, et al. Key technology and status of metal arc additive morphology control[J]. Materials Reports, 2022, 36(12): 135 − 142. doi: 10.11896/cldb.20090337
    [2]
    柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 − 90.

    Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manufactured by TIG arc[J]. Transaction of the China Welding Institution, 2015, 36(9): 87 − 90.
    [3]
    Xiong Jun, Yin Ziqiu. Forming appearance control of arc striking and extinguishing area in multi-layer single-pass GM AW-based additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1): 579 − 586.
    [4]
    周春东, 章晓勇, 彭勇. 等. CMT Cycle Step 工艺参数对焊缝表面特征纹路及成形尺寸的影响[J]. 焊接学报, 2023, 44(5): 95 − 101. doi: 10.12073/j.hjxb.20220126001

    Zhou Chundong, Zhang Xiaoyong, Peng Yong, et al. Influence of CMT cycle step process parameters on weld surface feature patterns and forming[J]. Transactions of the China Welding Institution, 2023, 44(5): 95 − 101. doi: 10.12073/j.hjxb.20220126001
    [5]
    Hu Z Q, Qin X P, Li Y F, et al. Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing[J]. Journal of Intelligent Manufacturing, 2020, 31: 1133 − 1147. doi: 10.1007/s10845-019-01501-z
    [6]
    赵鹏, 吕彦明, 周文军, 等. 钨极惰性气体保护焊电弧增材制造单焊道尺寸预测[J]. 机械工程材料, 2020, 44(11): 78 − 82,91. doi: 10.11973/jxgccl202011014

    Zhao Peng, Lu Yanming, Zhou Wenjun, et al. Prediction of Single Weld Based Size of TIG Welding Arc Additive Manufacturing[J]. Materials for Mechanical Engineering, 2020, 44(11): 78 − 82,91. doi: 10.11973/jxgccl202011014
    [7]
    孙家豪, 张超勇, 吴剑钊, 等. 基于神经网络的316L不锈钢激光焊焊缝形貌预测[J]. 焊接学报, 2021, 42(12): 40 − 47. doi: 10.12073/j.hjxb.20210526003

    Sun Jiahao, Zhang Chaoyong, Wu Jianzhao, et al. Neural network-based prediction of weld morphology for laser welding of 316L stain less steel[J]. Transactions of the China Welding Institution, 2021, 42(12): 40 − 47. doi: 10.12073/j.hjxb.20210526003
    [8]
    Yao P, Zhou K, Tang H. Effects of operational parameters on the characteristics of ripples in double-pulsed GMAW process[J]. Materials, 2019, 12(17): 2767. doi: 10.3390/ma12172767
    [9]
    Yao P, Zhou K, Huang S. Process and parameter optimization of the double-pulsed GMAW process[J]. Metals, 2019, 9(9): 1009. doi: 10.3390/met9091009
    [10]
    Wang Xiaoming, Wei L, Yajie L, et al. Prediction model of refined gasoline blending formula based on PSO-DBN[J]. China Petroleum Processing & Petrochemical Technology, 2022, 24(3): 128 − 138.
  • Related Articles

    [1]LE Jian, ZHANG Hua, ZHANG Qiqi, WU Jinhao. Overhead weld tracking by robots based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 56-60.
    [2]YIN Ziqiang, ZHANG Guangjun, ZHAO Huihui, YUAN Xin, WU Lin. Design of human-machine interactive robotic arc welding remanufacturing system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 69-72.
    [3]SHEN Junqi, HU Shengsun, FENG Shengqiang, GAO Zhonglin. Bead geometry prediction based on SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 103-106.
    [4]ZHOU Lü, CHEN Shan-ben, LIN Tao, CHEN Wen-jie. Autonomous seam tracking based on local vision in arc robotic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 49-52.
    [5]YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45.
    [6]CAO Hai-peng, ZHAO Xi-hua, ZHAO He. Intelligent process design of resistance spot welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 21-24.
    [7]CAO Hai-peng, ZHAO Xi-hua, ZHAO Lei. An intelligent inference for resistance spot welding procedure parameters on CBR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 1-3,14.
    [8]CHEN Jun-mei, LU Hao, WANG Jian-hua, CHEN Wei-xin, HAO Da-jun. Effect of Mesh Sizes on Welding Deformation Prediction Precision of Buicks Underframe Assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 33-35,39.
    [9]YE Feng, SONG Yong-lun, LI Di, CHEN Fu-gen. On-line Quality Monitoring in Robot Arc Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 5-7.
    [10]Zhao Xihua, Wang Chenyu. Parameter Selection Based on Expert System and Artificial Neural Network in Resistance Spot Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 3-8.
  • Cited by

    Periodical cited type(2)

    1. 王新宇,周惦武,赵蕾,邓乔,贺赵国. 基于DBO-RF的磁场辅助镁/铝异种金属激光焊工艺. 焊接学报. 2025(02): 72-79 . 本站查看
    2. 盖胜男,王玉,许斌,王凯,肖珺,陈树君. 基于被动视觉的铝合金TIG焊缝成形监测. 焊接学报. 2025(04): 32-40 . 本站查看

    Other cited types(0)

Catalog

    Article views (124) PDF downloads (40) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return