Advanced Search
GAO Yanfeng, ZHANG Hua, MAO Zhiwei, PENG Junfei. Coordinate control of broken-line welding seam tracking for wheeled robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 33-36.
Citation: GAO Yanfeng, ZHANG Hua, MAO Zhiwei, PENG Junfei. Coordinate control of broken-line welding seam tracking for wheeled robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 33-36.

Coordinate control of broken-line welding seam tracking for wheeled robot

More Information
  • Received Date: July 10, 2007
  • A coordinate control method was proposed for wheeled welding robot with rotational arc as sensor to track brokenline welding seam.Self-turning fuzzy controllerwas designed to complete coordinately controlling of cross-slider and wheels, and exactly welding seam tracking was realized by use of the controller.To make the robot's moving direction parallel to the welding seam direction, Sugerno fuzzy logic system was used as a filter to process the robot's orientation errors, which makes the robot move along when tracking lined section of welding seam and turn quickly when tracking covered section of welding seam.The experimental results show that the presented method is valid to track 60°broken-line welding seam and Z shape welding seam.
  • Related Articles

    [1]MA Qiang, CHEN Mingxuan, MENG Junsheng, LI Chengshuo, SHI Xiaoping, PENG Xin. Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 90-96. DOI: 10.12073/j.hjxb.20210202002
    [2]YIN Yan, LI Zhihui, LI Hui, LI Zhiheng, LU Chao, ZHANG Ruihua. High-temperature wear resistance of Co-based cladding layers by ultra-high speed laser cladding on the surface of the cast-rolling roller sleeve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 81-89. DOI: 10.12073/j.hjxb.20210122001
    [3]WANG Kai, JIAO Xiangdong, ZHU Jialei, LI Jingyang, DU Shixuan. Effect of laser power density on wear resistance of TC4 alloy manufactured by SLM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 61-64. DOI: 10.12073/j.hjxb.20190926001
    [4]WANG Chenglei, GAO Yuan, ZHANG Guangyao. Microstructure and wear resistanced of deposited rare earth CeO2+Ni60 alloys coatings on 6061 Al alloys by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 13-16.
    [5]ZHANG Song, ZHOU Lei, HAO Yuxi, ZHANG Chunhua, WANG Dongsheng, WANG Maocai. Microstructure,friction and wear properties of Ni-based alloy coating on Monel alloy substrate by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 9-12.
    [6]WANG Zhenting, DING Yuanzhu, LIANG Gang. Microstructure and wear resistance of in-situ synthesis TiB2-TiN particulates of composite coating reinforced titanium alloy surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 105-108.
    [7]ZHANG Song, WANG Mingsheng, ZHANG Kaixiang, ZHANG Chunhua, YAN Yonggen. CoNiCrAlY alloy deposited on surface of SCH13 steel by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 49-52.
    [8]LI Fuquan, CHEN Yanbin, LI Liqun. Microstructure and wear property of surface modification layer produced by laser melt injection WC on Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 28-32.
    [9]ZHANG Chunhua, ZHANG Zhuo, ZHANG Song, HAN Zhong, MAN Hauchung. Fretting wear behavior of laser surface melted NiTi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 22-24,28.
    [10]YAN Yonggen, SI Songhua, ZHANG Hui, HE Yizhu. Microstructure and wear resistance of laser cladding Co+Ni/WC alloy composite coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 21-24.

Catalog

    Article views (210) PDF downloads (59) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return