Advanced Search
MA Qiang, CHEN Mingxuan, MENG Junsheng, LI Chengshuo, SHI Xiaoping, PENG Xin. Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 90-96. DOI: 10.12073/j.hjxb.20210202002
Citation: MA Qiang, CHEN Mingxuan, MENG Junsheng, LI Chengshuo, SHI Xiaoping, PENG Xin. Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 90-96. DOI: 10.12073/j.hjxb.20210202002

Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding

More Information
  • Received Date: February 01, 2021
  • Available Online: December 01, 2021
  • The TiB2 reinforced Ni-based composite coating is prepared on the surface of pure copper by argon arc cladding technology to improve its wear resistance. The Ti powder, B powder and Ni powder are ball-milled and mixed. The ceramic particle reinforced nickel base coating was fabricated by melting the preset powder on the surface of pure copper by using argon arc cladding. The phase of the coating and the composition, distribution and structure of ceramic particles in the coating were analyzed by X-ray diffractometer, scanning electron microscope and transmission electron microscope. The microhardness and wear properties of the coating were tested by microhardness tester and friction and wear tester. The results showed that the phases of the cladding coating mainly include γ (Ni, Cu) and TiB2. The ceramic particle reinforced phases are uniformly dispersed in the cladding coating. However, the particle phase TiB2 exists in the form of hexagon. There is no defect in the interface between cladding layer and substrate. The cladding coating has high microhardness. When the mass fraction of (Ti+B) is 10%, the microhardness of the coating is as high as 781.3 HV. Compared with the pure copper substrate, the microhardness of the cladding coating is increased by about 11.7 times. With the increase of (Ti+B) mass fraction, the friction coefficient and wear loss of the coating decrease first and then increase under the same wear conditions, respectively. The in-situ synthesized TiB2 particles reinforced nickel base coating can significantly improve the wear resistance of the pure copper surface by argon arc cladding technology.
  • 袁庆龙, 梁宁宁. 纯铜表面改性工艺研究进展[J]. 材料导报, 2012, 26(S2): 138 − 140.

    Yuan Qinglong, Liang Ningning. Research progress of pure copper surface modification technology[J]. Materials Review, 2012, 26(S2): 138 − 140.
    房永祥, 齐丽君, 王珂, 等. 纯铜表面脉冲激光熔覆Ni60涂层的结构与性能研究[J]. 激光技术, 2017, 41(1): 40 − 46.

    Fang Yongxiang, Qi Lijun, Wang Ke, et al. Investigation of structure and properties of Ni60 coatings on pure copper by pulsed laser cladding[J]. Laser Technology, 2017, 41(1): 40 − 46.
    闫风洁, 李辛庚, 姜波, 等. 纯铜在碱性土壤中的腐蚀行为[J]. 腐蚀科学与防护技术, 2019, 31(2): 155 − 158. doi: 10.11903/1002.6495.2018.173

    Yan Fengjie, Li Xigeng, Jiang Bo, et al. Corrosion behavior of pure copper in alkaline soil[J]. Corrosion Science and Protection Technology, 2019, 31(2): 155 − 158. doi: 10.11903/1002.6495.2018.173
    朱胜, 张雨豪, 郭迎春, 等. 铜合金零部件损伤修复技术的研究进展[J]. 模具制造, 2019, 19(9): 61 − 66.

    Zhu Sheng, Zhang Yuhao, Guo Yingchun, et al. Research progress of damage repair technology for copper alloy parts[J]. Mould Manufacturing, 2019, 19(9): 61 − 66.
    赵健, 刘光, 马冰, 等. 铜材表面激光合金化和激光熔覆制备Ni/Cu-Cr3C2/Co梯度涂层[J]. 表面技术, 2018, 47(8): 162 − 169.

    Zhao Jian, Liu Guang, Ma Bing, et al. Preparation of Ni/Cu-Cr3C2/Co gradient coating in the combination of laser alloying and laser cladding technologies on copper products[J]. Surface Technology, 2018, 47(8): 162 − 169.
    Dehm G, Bamberger M. Laser cladding of Co-based hardfacing on Cu substrate[J]. Journal of Materials Science, 2002, 37(24): 5345. doi: 10.1023/A:1021041527980
    李玉海, 王震, 赵晖, 等. 铜合金激光表面强化研究进展[J]. 沈阳理工大学学报, 2019, 38(6): 22 − 27.

    Li Yuhai, Wang Zhen, Zhao Hui, et al. Research progress of laser surface strengthening of copper alloys[J]. Journal of Shenyang University of Science and Technology, 2019, 38(6): 22 − 27.
    傅卫, 方洪渊, 徐凯, 等. 激光重熔镍镀层复合工艺制备铜合金表面涂层[J]. 焊接学报, 2018, 39(4): 99 − 103. doi: 10.12073/j.hjxb.2018390104

    Fu Wei, Fang Hongyuan, Xu Kai, et al. Experimental research on laser cladding Ni60A coating on pure copper substrate[J]. Transactions of the China Welding Institution, 2018, 39(4): 99 − 103. doi: 10.12073/j.hjxb.2018390104
    李岩, 张永忠, 黄灿, 等. 纯铜表面激光熔覆TiB2/Cu涂层的组织及导电性能[J]. 激光技术, 2012, 36(5): 585 − 588.

    Li Yan, Zhang Yongzhong, Huang Can, et al. Microstructure and conductivity of laser cladding TiB2/Cu coating on pure copper surface[J]. Laser Technology, 2012, 36(5): 585 − 588.
    张忠礼, 赵娇玉, 王艳燕, 等. 纯铜热喷涂扩散渗铝层的显微组织[J]. 沈阳工业大学学报, 2008, 44(4): 437 − 443. doi: 10.3969/j.issn.1000-1646.2008.04.017

    Zhang Zhongli, Zhao Jiaoyu, Wang Yanyan, et al. Microstructure of diffused aluminized layer of pure copper thermal spraying[J]. Journal of Shenyang University of Technology, 2008, 44(4): 437 − 443. doi: 10.3969/j.issn.1000-1646.2008.04.017
    郭晓琴, 郭永春, 顾林喻. 激光熔覆Cu-TiB2复合材料涂层及其耐磨性[J]. 热加工工艺, 2004(11): 22 − 23,26. doi: 10.3969/j.issn.1001-3814.2004.11.008

    Guo Xiaoqin, Guo Yongchun, Gu Linyu. Laser cladding Cu-TiB2 composite coating and wear resistance[J]. Thermal processing technology, 2004(11): 22 − 23,26. doi: 10.3969/j.issn.1001-3814.2004.11.008
    姜圆博. 纯铜表面激光熔覆TiB2/Ni45复合材料的研究[D]. 秦皇岛: 燕山大学, 2014.

    Jiang Yuanbo. Study on laser cladding TiB2/Ni45 composite on pure copper[D]. Qinhuangdao: Yanshan University, 2014.
    刘芳, 刘常升, 陶兴启, 等. 结晶器铜板上激光熔覆镍基合金[J]. 东北大学学报 (自然科学版), 2006, 27(10): 1106 − 1109.

    Liu Fang, Liu Changsheng, Tao Xingqi, et al. Laser cladding of nickel-based alloy on copper plate of crystallizer[J]. Journal of Northeastern University (Natural Science Edition), 2006, 27(10): 1106 − 1109.
    Meng Junsheng, Shi Xiaoping, Zhang Shaojun, et al. Friction and wear properties of TiN-TiB2-Ni based composite coatings by argon arc cladding technology[J]. Surface Coatings Technology, 2019, 374: 437 − 447. doi: 10.1016/j.surfcoat.2019.06.015
    Meng Junsheng, Jin Guo, Shi Xiaoping. Structure and tribological properties of argon arc cladding Ni-based nanocrystalline coatings[J]. Applied Surface Science, 2018, 431: 135 − 142. doi: 10.1016/j.apsusc.2017.05.238
    Wang H Q, Sun J S, Li C N, et al. Microstructure and mechanical properties of molybdenum - iron - boron - chromium cladding using argon arc welding[J]. Materials Science and Technology, 2016, 32(16): 1694 − 1701. doi: 10.1080/02670836.2016.1140926
    王振廷, 付长璟, 梁刚, 等. 氩弧熔覆原位合成TiC-TiB2复合抗氧化涂层[J]. 焊接学报, 2016, 37(2): 103 − 107.

    Wang Zhenting, Fu Changjing, Liang Gang, et al. In-situ synthesis of TiC-TiB2 composite anti-oxidation coating by argon arc cladding[J]. Transactions of the China Welding Institution, 2016, 37(2): 103 − 107.
    Wang Zhenting, Zhou Xiaohui, Zhao Guogang. Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 831 − 835. doi: 10.1016/S1003-6326(08)60144-2
    An Yajun, Li Zhu, Li Weiqiang, et al. Study of fly ash-based flux effects on microstructure and wear of TIG-cladded Ni-based composite coating[J]. Results in Physics, 2019, 12: 970 − 974. doi: 10.1016/j.rinp.2018.12.004
    Zhao D G, Liu X F, Pan Y C, et al. Microstructure and mechanical behavior of AlSiCuMgNi piston alloys reinforced with TiB2 particles[J]. Journal of Materials Science, 2006, 41: 4227 − 4232. doi: 10.1007/s10853-006-6247-y
    孟君晟, 史晓萍, 王振廷, 等. TC4合金表面氩弧熔覆TiC/Ti基复合涂层组织及耐磨性[J]. 稀有金属材料与工程, 2012, 41(7): 1259 − 1262. doi: 10.3969/j.issn.1002-185X.2012.07.029

    Meng Junsheng, Shi Xiaoping, Wang Zhenting, et al. Microstructure and wear resistance of TiC/Ti based composite coating on TC4 Alloy by argon arc cladding[J]. Rare Metal Materials and Engineering, 2012, 41(7): 1259 − 1262. doi: 10.3969/j.issn.1002-185X.2012.07.029
    孟君晟. 氩弧熔覆TiB2+TiN/Ni涂层的微观结构与摩擦学行为[D]. 哈尔滨: 哈尔滨理工大学, 2016.

    Meng Junsheng. Microstructure and tribological behavior of TiB2+TiN/Ni coating by argon arc cladding[D]. Harbin: Harbin University of Science and Technology, 2016.
    David G M, John V W. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: Microstructure and abrasive wear behaviour[J]. Materials Science and Engineering A, 2002, 336: 88 − 98. doi: 10.1016/S0921-5093(01)01918-9
    马宁, 赵迪, 张柯柯, 等. TIG熔覆原位自生TiC-TiB2/Fe复合涂层[J]. 焊接学报, 2018, 39(10): 124 − 128.

    Ma Ning, Zhao Di, Zhang Keke, et al. In situ TiC-TiB2/Fe composite coating by TIG cladding[J]. Transactions of the China Welding Institution, 2018, 39(10): 124 − 128.

Catalog

    Article views (306) PDF downloads (33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return