Advanced Search
YIN Yan, LI Zhihui, LI Hui, LI Zhiheng, LU Chao, ZHANG Ruihua. High-temperature wear resistance of Co-based cladding layers by ultra-high speed laser cladding on the surface of the cast-rolling roller sleeve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 81-89. DOI: 10.12073/j.hjxb.20210122001
Citation: YIN Yan, LI Zhihui, LI Hui, LI Zhiheng, LU Chao, ZHANG Ruihua. High-temperature wear resistance of Co-based cladding layers by ultra-high speed laser cladding on the surface of the cast-rolling roller sleeve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 81-89. DOI: 10.12073/j.hjxb.20210122001

High-temperature wear resistance of Co-based cladding layers by ultra-high speed laser cladding on the surface of the cast-rolling roller sleeve

More Information
  • Received Date: January 21, 2021
  • Available Online: December 01, 2021
  • In order to improve the service life of the cast-rolling roller sleeve, a Co-based cladding layer was prepared on the surface of the 32Cr3Mo1V cast-rolling roller sleeve using ultra-high-speed laser cladding technology. The surface morphology, microstructure, high-temperature friction and wear properties of the cladding layer were analyzed. And which was compared with that of the preferred conventional laser cladding layer. The results show that the preferred ultra-high-speed and conventional laser cladding layers all have a smooth surface and a good combination with the substrate without obvious cracks, pores and other defects. In contrast, the microstructure of the layer by ultra-high-speed laser cladding is very uniform and fine. And the dendrite axis spacing is extremely small, which largely suppresses the range of dendrite segregation. As a result, the more uniform distribution of element was obtained. During the process of 700 ℃ high temperature friction and wear test, the super oxide wear debris produced from the high-speed laser cladding layer is more smaller compared with that of conventional laser cladding layer. Therefore the agglomeration effect is more likely to occur, which is conducive to the formation of the enamel layer with anti-friction resistance. As the same time, the deformation of the layer by ultra-high-speed laser cladding is smaller, which has more effectively support for the enamel layer, consequently a large area enamel layer can be obtained. Thus the ultra-high-speed laser cladding layer exhibits excellent high-temperature friction and wear resistance.
  • Haga T, Suzuki S. A high speed twin roll caster for aluminum alloy strip[J]. Journal of Materials Processing Technology, 2001, 113(1): 291 − 295.
    刘素华. 铸轧辊辊套使用寿命的探讨[J]. 轻合金加工技术, 2009, 37(9): 34 − 35.

    Liu Suhua. Discussion on the service life of casting roll sleeve[J]. Light Alloy Fabrication Technology, 2009, 37(9): 34 − 35.
    张晓东, 董世运, 王志坚, 等. 激光再制造金属零件熔覆层组织及耐磨性能[J]. 焊接学报, 2010, 31(2): 75 − 77.

    Zhang Xiaodong, Dong Shiyun, Wang Zhijian, et al. Microstructure and wear resistance of laser remanufacturing metal parts[J]. Transactions of the China Welding Institution, 2010, 31(2): 75 − 77.
    员霄, 王井, 朱青海, 等. H13钢的铁基和钴基熔覆层组织与耐磨性[J]. 焊接学报, 2018, 39(12): 105 − 109. doi: 10.12073/j.hjxb.2018390307

    Yun Xiao, Wang Jing, Zhu Qinghai, et al. Microstructure and abrasion resistance of Fe-based and Co-based coatings of AISI H13[J]. Transactions of the China Welding Institution, 2018, 39(12): 105 − 109. doi: 10.12073/j.hjxb.2018390307
    张春华, 张松, 李春彦, 等. 热作模具钢表面激光熔覆StelliteX-40钴基合金[J]. 焊接学报, 2005, 26(1): 17 − 21.

    Zhang Chunhua, Zhang Song, Li Chunyan, et al. Laser cladding Stellite X-40 Co-based alloy on hot die steel[J]. Transactions of the China Welding Institution, 2005, 26(1): 17 − 21.
    李俐群, 申发明, 周远东, 等. 超高速激光熔覆与常规激光熔431不锈钢涂层微观组织和耐蚀性的对比[J]. 中国激光, 2019, 46(10): 174 − 183.

    Li Liqun, Shen Faming, Zhou Yuandong, et al. Comparison of microstructure and corrosion resistance of 431 stainless steel coatings prepared by extreme high-speed laser cladding and conventional laser cladding[J]. Chinese Journal of Lasers, 2019, 46(10): 174 − 183.
    袁庆龙, 冯旭东, 曹晶晶, 等. 激光熔覆技术研究进展[J]. 材料导报, 2010, 24(3): 112-116.

    Yuan Qinglong, Feng Xudong, Cao Jingjing, et al. Research progress in lasear cladding technology[J]. Materials Review, 2010, 24(3): 112 − 116.
    娄丽艳, 张煜, 徐庆龙, 等. 超高速激光熔覆低稀释率金属涂层微观组织及性能[ J]. 中国表面工程, 2020, 33(2): 149-159.

    Lou Liyan, Zhang Yu, Xu Qinglong, et al. Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[ J]. China Surface Engineering, 2020, 33( 2): 149-159.
    Li Liqun, Shen Faming, Zhou Yuandong, et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding[J]. Journal of Laser Applications, 2019, 31(4): 042009. doi: 10.2351/1.5094378
    崔岗, 韩彬, 崔娜, 等. 扫描速度对激光熔覆Ni基WC合金涂层组织与性能的影响[J]. 中国表面工程, 2014, 27(4): 82 − 88. doi: 10.3969/j.issn.1007-9289.2014.04.013

    Cui Gang, Han Bin, Cui Na, et al. Effects of scanning speed on microstructure and properties of laser cladding Ni-based WC alloy coating[J]. China Surface Engineering, 2014, 27(4): 82 − 88. doi: 10.3969/j.issn.1007-9289.2014.04.013
    Song L J, Zeng G C, Xiao H, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders[J]. Journal of Manufacturing Processes, 2016, 24(1): 116 − 124.
    澹台凡亮, 田洪芳, 陈峰, 等. 高速激光熔覆在27SiMn液压支架立柱上的应用探讨[J]. 新技术新工艺, 2019(3): 52 − 54.

    Tantai Fanliang, Tian Hongfang, Chen Feng, et al. Discussion on application of high-speed laser cladding on 27SiMn hydraulic support column[J]. New Technology & New Process, 2019(3): 52 − 54.
    张煜, 娄丽艳, 徐庆龙, 等. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56( 11): 1530-1541.

    Zhang Yu, Lou Liyan, Xu Qinglong, et al. Microstructure and wear resistance of Ni-based WC coating by ultra-high speed laser cladding[ J]. Acta Metallurgica Sinica, 2020, 56(11): 1530-1541.
  • Cited by

    Periodical cited type(13)

    1. 王康龙,常云峰,刘晓芳,张陕南,付毅帅,薛行雁. 超高速激光熔覆耐腐蚀涂层研究进展. 电焊机. 2025(02): 85-94 .
    2. 尹燕,周炜,李辉,龚岩,张潇,张瑞华. 32Cr3Mo1V表面激光熔覆TiC/钴基高温合金组织和性能研究. 热加工工艺. 2024(02): 73-77 .
    3. 陈乐,洪晓峰,魏光强,丁睿智,古博,宁方强. 激光熔覆Stellite 6合金涂层的耐磨耐蚀性能研究. 激光杂志. 2024(06): 210-214 .
    4. 齐泓钧,坚永鑫,陈子晗,黄国胜,皇志富,邢建东. 超高速激光熔覆技术及其耐磨蚀涂层材料研究进展. 热加工工艺. 2024(16): 1-8 .
    5. 付琴,姜炳春,胡少华,阎文. 高温高速下铁基合金激光熔覆涂层耐磨性能研究. 激光杂志. 2024(11): 197-202 .
    6. 周梁栋,张亮,吴文恒. 钴基合金激光熔覆技术研究与应用现状. 粉末冶金工业. 2023(02): 88-95 .
    7. 轩康乐,张新文,俞杰,黄笑笑,张春香. 32Cr3Mo1V连铸圆坯端部锯切缺陷的原因分析及工艺改进. 物理测试. 2023(02): 48-52 .
    8. 王月祥,潘雄飞,沈晓辉,王会廷. 激光熔覆Stellite6–60WC复合涂层工艺及高温耐磨性. 安徽工业大学学报(自然科学版). 2023(04): 394-400 .
    9. 何云斌,柯庆镝,蔚辰. 激光熔覆HSS涂层滚滑动摩擦磨损及热疲劳损伤研究. 合肥工业大学学报(自然科学版). 2023(12): 1629-1634 .
    10. 吴学宏. 超高速激光熔覆高熵合金技术在再制造中的应用研究综述. 造纸装备及材料. 2022(03): 79-81 .
    11. 朱明冬,吴冰洁,曹立彦,李彦儒,张润豪,吴佳玥. 304LN不锈钢表面激光熔覆钴基合金组织和性能. 焊接学报. 2022(08): 48-53+86+116 . 本站查看
    12. 杨义成,徐富家,黄瑞生,蒋宝,武鹏博,杜兵. 激光辐照下粉末颗粒物态变化特征. 焊接学报. 2022(11): 78-83+167 . 本站查看
    13. 张杰,李大胜,高慧阳. 重熔对激光熔覆Cr_3C_2/Ni涂层组织与性能的影响. 应用激光. 2022(12): 20-26 .

    Other cited types(9)

Catalog

    Article views (357) PDF downloads (41) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return