Advanced Search
CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88.
Citation: CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88.

Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD

More Information
  • Received Date: January 08, 2006
  • The software of SYSWELD was used to build model and simulate the thermal cycle of in-service welding onto active pipeline of X70 steel using water as flowing medium.Influence of flow rate, pipe wall thickness and heat input on thermal cycle of coarse grain heat-affected zone was studied and the simulation results were tested by measuring thermal cycle on experiment pipelines.The results show that t8/5 decreases when flow rate increases but the decrease amplitude is not so obvious.When flow rate is less than 0.5 m/s, t8/3 and t8/1 rapidly decrease while flow rate increases.When flow rate is greater than 0.5 m/s, t8/3 and t8/1 decrease slowly while the flow rate increases.t8/5 and t8/3 increase with the pipe wall thickness increasing and arrive at the maximum when wall thickness is 8 mm, and then decreases.But t8/1 increases when wall thickness increases from 5 mm to 12 mm.t8/5, t8/3 and t8/1 increase with heat input increasing.The simulation results of the thermal cycle agree well with the measured results and the relative error is less than 8%.
  • Related Articles

    [1]LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003
    [2]WANG Shang, TIAN Yanhong, HAN Chun, LIU YangZhi. Effect of temperature distribution of CBGA components on fatigue life of solder joint by FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 113-118.
    [3]LIU Lu, WANG Ping, LIU Yong, MA Ran. Research on residual distortion of welded tubular structure based on FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 113-116.
    [4]MI Gaoyang, WEI Yanhong, ZHAN Xiaohong, GU Cheng. A study of automatically transitional meshing approach for finite element method during butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 44-46,88.
    [5]WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25.
    [6]CHEN Yongxiong, LIANG Xiubing, SHANG Junchao, XU Binshi. Analysis of FEA of residual stress for thermal sprayed coating on shaft parts[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 13-16.
    [7]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [8]GAO Jiashuang, YANG Jianguo, FANG Hongyuan, SHI Wenyong, SHANG Haibo. FEA preprocessing system of welding analysis based on VRML[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 93-96.
    [9]ZHANG Mingxian, WU Chuansong, LI Kehai, ZHANG Yuming. FEA based prediction of weld dimension in new DE-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 33-37.
    [10]ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.

Catalog

    Article views (317) PDF downloads (159) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return