Advanced Search
MA Bo-jiang, XU Hong-jun, FU Yu-can, XIAO Bing, XU Jiu-hua. Interfacial characteristics of diamond brazed by high-frequency induction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 50-54.
Citation: MA Bo-jiang, XU Hong-jun, FU Yu-can, XIAO Bing, XU Jiu-hua. Interfacial characteristics of diamond brazed by high-frequency induction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 50-54.

Interfacial characteristics of diamond brazed by high-frequency induction

More Information
  • Received Date: March 29, 2004
  • The interfacial characteristics of the Ti coated diamonds and uncoated diamonds was investigated.The interfaces were brazed by high-frequency induction with two kinds of NiCr alloys on the same conditions.The grains brazed by high-frequency induction were immerged into the mixed acids for several hours and then rinsed with acetone.The interfacial characteristics of the grains were studied with scanning electron microscope,energy dispersion spectrometer and X-ray diffraction.The results show that the composition and the shape of carbides of the brazed diamond grains are different when different solders were used to braze diamonds with or without Ti coatings.The Cr carbides of brazed Ti coated diamond grains are normally and compactly formed,whereas,the Cr carbides on the surface of brazed uncoated diamond are tangentially and loosely formed.The abrasive experiment indicates that the bond strengths between the carbide and the diamonds are also different with different carbides.
  • Related Articles

    [1]LU Yongxin1,2,3, LI Xiao1, JING Hongyang2,3, XU Lianyong2,3, HAN Yongdian2,3. Finite element simulation of carbon steel welded joint corrosion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 10-14. DOI: 10.12073/j.hjxb.2018390112
    [2]REN Jigang, LUO Zhen, YAO Qi, LI Yang, XU Jinhai. Magnetic field distributionof ferromagnetic workpieces resistance spot welding based on finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 47-50.
    [3]ZHAO Sheng, CHEN Zhen, LUO Yu. Application of high order elements in welding thermal elastic-plastic finite element analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 54-58.
    [4]FU Lei, CHENG Ronglong, YANG Jianguo, WANG Tao, FANG Hongyuan. Analysis of stress concentration factors of overlap joints based on finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 109-112.
    [5]ZHU Song, ZHOU Zhenping, QIU Xiaoming. Finite element modeling of residual stress in bonding interface of Ni-Cr/porcelain[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 45-48,52.
    [6]ZHU Miaofeng, LU Fenggui, CHEN Yunxia, YAO Shun. Finite element analysis on laser welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 97-100.
    [7]LUO Yongchi. Nonlinear finite element analysis of residual stresses and thermoharm in direct welded K-joint of steel tubular members[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 65-68.
    [8]WU Yu-xiu, XUE Song-bai, HU Yong-Fang. Finite element analysis on reliability of soldered joint of J-lead[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 85-88.
    [9]JIN Xiao-jun, HUO Li-xing, ZHANG Yu-feng, BAI Bing-ren, Li Xiao-wei, Cao Jun. Three dimensional finite element numerical simulation of residual stresses of all-position welding in duplex stainless steel pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 52-56.
    [10]ZHU Yuan-xiang, ZHANG Xiao-fei, Yang bing, Li xiao-mei. The Numeric Simulation of Weld Residual Stress of Several Weld-Repaired Based on Finite Element[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 65-68.

Catalog

    Article views (249) PDF downloads (67) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return