Advanced Search
CAO Hai-peng, ZHAO Xi-hua, ZHAO He. Intelligent process design of resistance spot welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 21-24.
Citation: CAO Hai-peng, ZHAO Xi-hua, ZHAO He. Intelligent process design of resistance spot welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 21-24.

Intelligent process design of resistance spot welding of aluminum alloys

More Information
  • Received Date: October 12, 2004
  • A process parameters design system of resistance spot welding of aluminum alloys integrating case based reasoning,fuzzy inference and fuzzy neutral network(FNN) was developed.Material physical parameters such as electrical conductivity,yield strength etc.were used as inputs of the system.This more suitable to the physical mechanism of resistance spot welding process.It showed more flexibility to design process by using process intensity as one of the parameters.A FNN was built to improve the intelligence of solution to process design and its learning ability.The results of numerical simulation of resistance spot welding aluminum alloys were included in database as a complementary for the FNN training.It enriched the training samples of FNN and intensified generalization ability of the system.The applications approved that the system was able to meet the practical demand of the process design.
  • Related Articles

    [1]WU Gang, CHEN Tian, YU Lianghui, LIU Zhipeng. Study on classification of tensile shear strength of spot welding joints based on PSO-SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 120-128. DOI: 10.12073/j.hjxb.20230820001
    [2]FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001
    [3]YUAN Tao1, CHEN Shujun1, LUO Zhen2, ZHANG Yu2. A grain refining method of Al alloy welds with ultrasonic stirring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 21-24. DOI: 10.12073/j.hjxb.2018390114
    [4]ZHOU Liucheng, ZHOU Lei, LI Yinghong, WANG Cheng. Effect of laser shock processing on tensile strength of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 52-54,58.
    [5]CHEN Jianfeng, CAO Pingzhou, DONG Xianfeng. Experiment on tensile and shear strength of front fillet welded joint post-high-temperatures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 81-84.
    [6]GANG Tie, ZHAO Xuemei, LIN Sanbao, LUAN Yilin. Non-destructive evaluation of FSW tensile property[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 1-4.
    [7]XUE Song-bai, WU Yu-xiu, CUI Guo-ping, ZHANG Ling. Numerical simulation of effect of thermal cycling on tensile strength and microstructure of QFP soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 1-4.
    [8]YAO Li-hua, XUE Song-bai, WANG Peng, LIU Lin. Effect of diode-laser parameters on tensile strength of QFP micro-joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 90-92.
    [9]HU Yong-fang, XUE Song-bai, SHI Yi-ping, YU Sheng-lin. Effects of lead-free solder on the tensile strength of QFP micro-joints soldered with different pitchs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 72-74.
    [10]ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.

Catalog

    Article views (273) PDF downloads (64) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return