Advanced Search
WANG Xue, SHI Yu-xiang, REN Yao-yao, LAI Jing-ping. Study of cold cracking susceptibility of CO2 gas shielded arc welded SA106C cast steel using implant tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 77-80.
Citation: WANG Xue, SHI Yu-xiang, REN Yao-yao, LAI Jing-ping. Study of cold cracking susceptibility of CO2 gas shielded arc welded SA106C cast steel using implant tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 77-80.

Study of cold cracking susceptibility of CO2 gas shielded arc welded SA106C cast steel using implant tests

More Information
  • Received Date: February 15, 2004
  • Implant tests were performed on the SA106C cast steel welded using CO2 gas shielded arc welding,which intended to investigate the susceptibility of cold cracking (CR) and the fracture morphology.The results show that in the case of heat input being 16 kJ/cm and no preheating,the critical fracture stress of implant is 560 MPa,near to the value of tensile strength,consequently,its resistance to CR is so high that it can be welded without preheating.If the restraint stress is higer than tensile strength,the fracture will occur.The features of the fracture is typical hydrogen-induced crack (HIC).The rupture mode of the fracture is found to consist of sugar like intergrannular (IG) and quasi-cleavage (QCHE),some sharp,perfectly straight,short sub-crack can be also observed additionally.With the crack propagating,the content of hydrogen is cut down,as a result,the proportion of IG decrease,wheras those of QCHE and sub-crack increase signifcantly,and more plastic deformation appears clue in QCHE.The reason for high resistance to CR of SA106C cast steel is mainly due to the lower content of hydrogen of CO2 arc welding process,and also related to the microstructures and as-quenched hadness of over heated zone near the weld interface,which is largely bainite with hardness of 321 HV,less than critical hardness of 350 HV.
  • Related Articles

    [1]LIU Kun, LI Jie, WANG Hao, JIAN Sijie. Evaluating solidification cracking susceptibility of Mg alloys and intergranular liquid backfilling during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 9-15. DOI: 10.12073/j.hjxb.20221126001
    [2]WANG Lei, LI He, HUANG Yong, WANG Kehong, ZHOU Qi. Phase field investigation on solidification cracking susceptibility in the molten pool under different anisotropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 83-86. DOI: 10.12073/j.hjxb.20210309001
    [3]ZHANG Yong, YE Wu, ZHOU Yunyun, XIE Hongxia, ZHANG Zhihan, CHU Qiang, LI Wenya. Defect repair of resistance spot welded aluminum alloy joint by friction stirring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 17-21.
    [4]WU Song, WANG Min, KONG Liang, Gao Boen, SUN You. Mechanism and suppression of cracking in 5052-O aluminum alloy resistance spot weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 92-96.
    [5]DONG Zhibo, ZHAN Xiaohong, WEI Yanhong, LU Yafeng, GUO Ping, YANG Yongfu. Pre-processing software for three-dimensional simulation and prediction of weld solidification cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 21-24.
    [6]LIU Ren-pei, DONG Zu-jue, PAN Yong-ming. Dynamic cracking behaviors of weld solidification cracks for aluminum alloys at elevated temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 9-13.
    [7]WANG Ya-rong, ZHANG Zhong-dian, FENG Ji-cai, Liu Hui, ZOU Li-jing. Effects of surface conditions on spot welded joint of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 27-30.
    [8]WEI Yan hong, XU Wen li, LIU Ren pei, DONG Zu jie, PENG Bo. Post treatment system of temperature fields for welding solidification crack simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 72-74.
    [9]WEI Yan-hong, LIU Ren-pei, DONG Zu-jue. Simulated Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (2): 36-38.
    [10]Wu Aiping, Ren Jialie, Lu Anli. Prevention of solidification cracking with auxiliary heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 7-11.

Catalog

    Article views (220) PDF downloads (61) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return