Advanced Search
WEI Yan hong, XU Wen li, LIU Ren pei, DONG Zu jie, PENG Bo. Post treatment system of temperature fields for welding solidification crack simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 72-74.
Citation: WEI Yan hong, XU Wen li, LIU Ren pei, DONG Zu jie, PENG Bo. Post treatment system of temperature fields for welding solidification crack simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 72-74.

Post treatment system of temperature fields for welding solidification crack simulation

More Information
  • Received Date: February 09, 2003
  • On the basis of the previous study on welding solidification crack,the paper has developed a system for simulating welding solidification cracks.In the paper,the post-treating module of the system,namely simulating results of temperature field,is introduced.Based on a commercial finite element calculating software package,ADINT,the module uses program language Visual Basic 6.0 as main language to develop a data treatment system by combining with the math software package,MATLAB5.3,and matrix calculating function,Matrix VB.Providing a simple way to set up the position and time step to be treated,the module can display calculated temperature results in any positions and at any time steps.Temperature fields can be shown in the forms of three dimensions,contours and feature curves in transversal and vertical section,and the thermal cycles can be calculated and displayed in a given point.
  • Related Articles

    [1]XU Lianyong, LONG Zhiping, ZHAO Lei, HAN Yongdian, PENG Chentao. Effect of stress concentration at weld toes on combined high and low cycle fatigue of EH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 1-9. DOI: 10.12073/j.hjxb.20230619003
    [2]HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037
    [3]CEN Yaodong, CHEN Furong. Fatigue performance improvement of SPCC steel resistance seam welding by ultrasonic impact treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 115-119.
    [4]ZHENG Lijuan, XIANG Long, FU Yuming. Analysis of impacting on pulse current discharge for welded joint's strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 27-30.
    [5]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.
    [6]ZHAO Zhili, SUN Fenglian, WANG Lifeng, TIAN Chongjun. Design of lower stress and flexible CCGA solder joints and reliability expectancy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 53-56.
    [7]CHEN Lie, XIE Peilin. Theory and experimental research on controlling crack in double-scanning laser cladding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 65-68.
    [8]GAO lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on the soldered joint reliability of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 73-76.
    [9]YANG Fengping, SUN Qin. Analysis of stress concentration in weld of sheets welded by friction stir welding using finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 109-112.
    [10]ZHAO Xin-wei, LUO Jin-heng, LU Min-xu, LI He-lin, ZHANG Tian-zhong. Stress analysis method of weld angular distortion for spiral welding pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 25-28,32.

Catalog

    Article views (200) PDF downloads (61) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return