Advanced Search
DENG Cai yan, ZHANG Yu feng, HUO Li xing, BAI Bing ren, LI Xiao wei, CAO Jun. CTOD fracture toughness of welded joints of X65 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 13-16.
Citation: DENG Cai yan, ZHANG Yu feng, HUO Li xing, BAI Bing ren, LI Xiao wei, CAO Jun. CTOD fracture toughness of welded joints of X65 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 13-16.

CTOD fracture toughness of welded joints of X65 pipeline steel

More Information
  • Received Date: November 24, 2002
  • In accordance with the BS 7448,fracture toughness test standard,CTOD (crack tip opening displacement) tests were conducted at 0℃ in welded joints of X65 pipeline steel.According to the requirements of the standard,the specimen is a standard TPB (three point bending) shape that has a rectangular section of B×2B and notch orientation of NP.the results were calculated by using the P-V curves of parent material,weld metal and HAZ (heat affected zone).Finally,The test results were generalized and analysed.Especially,it indicates by the microstructure from metallograph that there are 3 HAZ specimens that don't meet the challenge that the fatigue crack tip is not more than 0.5mm from the fusion line and locates in coarse grain zone.The test results are in consistence with the P-V curves and CTOD values,explain the dispersity of the test values,and provide reliable evidence for ECA (engineering critical assessment),validate the BS7448 and embody its superiority.
  • Related Articles

    [1]DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001
    [2]LI Suli, YANG Laixia, LU Bingheng. Analysis of different occlusal modes and bite force of mandible[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 54-61, 82. DOI: 10.12073/j.hjxb.20200514001
    [3]ZHANG Long, ZENG Kai, HE Xiaocong, SUN Xinyu. Comparison of joint performance between spot weld bonding and resistance spot welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 55-30. DOI: 10.12073/j.hjxb.2018390013
    [4]YANG Youwen, TIAN Zongjun, PAN Hu, WANG Dongsheng, SHEN Lida. Geometry quality prediction of Ni-based superalloy coating by laser cladding based on neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 78-82.
    [5]ZHANG Yiliang, CUI Shuanwei, LI Xiaoyan. Comparative analysis of residual stress of main components of hydraulic support[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 89-92.
    [6]LIU Lipeng, WANG Wei, DONG Peixin, WEI Yanhong. Mechanical properties predication system for welded joints based on neural network optimized by genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 105-108.
    [7]LIU Lijun, WANG Qi, LAN Hu, ZHENG Hongyan, LI Feng. Feature extraction of arc sound signal in MIG welding based on linear prediction analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 35-38.
    [8]XIN Liming, ZHAO Mingyang, XU Zhigang. Misalignment production and its prediction model in tailored blank laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 89-92, 96.
    [9]DONG Zhibo, WEI Yanhong, Zhan Xiaohong, WEI Yongqiang. Optimization of mechanical properties prediction models of welded joints combined neural network with genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 69-72.
    [10]MA Yue-zhou, MA Chun-wei, ZHANG Peng-xian, CHEN Jian-hong. The Model of Spatter Prediction in CO2 Arc Welding Based on the Character of Sound Signal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 19-22.

Catalog

    Article views (371) PDF downloads (86) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return