Advanced Search
DONG Ping, CHEN Yu-ze, ZOU Jue-sheng, YAN Yi-xia. Finite element simulation of a ring structurieon laser brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 51-54.
Citation: DONG Ping, CHEN Yu-ze, ZOU Jue-sheng, YAN Yi-xia. Finite element simulation of a ring structurieon laser brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 51-54.

Finite element simulation of a ring structurieon laser brazing

More Information
  • Received Date: April 15, 2002
  • The temperature and stress fields of a ring structure laser welding are simulated by finite element method (FEM).A axial symmetry model and a thermal-mechanical coupled FEM are adopted,and it is assumed that the energy distribution of the laser beam is Gaussian distribution on the weld pool surface.The results show that the fusion zone (FZ) profile by FEM is much similar as that by metallurgic analysis.The brazing residual stresses are rather large within 2.5 mm from the brazing seam,which results in plastic deformation.The circumferential stress is larger than the axial stress,thus the axial cracking is easily occurred in beryllium ring.Radial shrinkage in beryllium ring is the same far from the brazing seam,but within 1 mm from the brazing seam,outer surface is outward expand and inner surface is inward shrinkage.The welding residual stresses exist mainly within 15 mm from the brazing seam.
  • Related Articles

    [1]TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001
    [2]CHEN Shujun, WU Na, XIAO Jun, LU Zhenyang. Realization and expulsion control of piezoelectric actuator assisted resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 1-7. DOI: 10.12073/j.hjxb.20200122002
    [3]CEN Yaodong, CHEN Furong, CHEN Lin. Mechanism of spatter defects in resistance plug welding of dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 115-120. DOI: 10.12073/j.hjxb.2019400323
    [4]LUO Yi, ZHU Yang, WAN Rui, XIE Xiaojian. Analysis on main factors of resistance spot welding spatter of galvanized sheet based on structure-bearing acoustic emission signals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 85-89.
    [5]WANG Mingmao, TAO Wang, MA Yinan, CHEN Yanbin, WANG Yang. Research on laser spot weld-bonding process characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 101-104.
    [6]XUE Haitao, LI Yongyan, CUI Chunxiang, AN Jinlong. Identification of multiclass defects in aluminum alloy resistance spot welding based on support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 97-100.
    [7]JIANG Shu-yuan, ZHENG Xiao-fang, CHEN Huan-ming, LIU Zhi-ling. Outside magnetic field control to spatter of CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 65-67.
    [8]WANG Ya-rong, ZHANG Zhong-dian, FENG Ji-cai, Liu Hui, ZOU Li-jing. Effects of surface conditions on spot welded joint of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 27-30.
    [9]MA Yue-zhou, MA Chun-wei, ZHANG Peng-xian, CHEN Jian-hong. The Model of Spatter Prediction in CO2 Arc Welding Based on the Character of Sound Signal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 19-22.
    [10]Wang Xinzhi, Chen Wuzhu, Cheng Shihong. Reducing Spatter for CO2 Welding Using Inverter with Satiable Inductor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 57-62.

Catalog

    Article views (216) PDF downloads (51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return