Advanced Search
WANG Jun, LI Fang, ZHANG Yuelong, HUA Xueming, SHEN Chen. Effect of Si content in welding wire on crack sensitivity of aluminum alloy joints and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 55-60. DOI: 10.12073/j.hjxb.20190827001
Citation: WANG Jun, LI Fang, ZHANG Yuelong, HUA Xueming, SHEN Chen. Effect of Si content in welding wire on crack sensitivity of aluminum alloy joints and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 55-60. DOI: 10.12073/j.hjxb.20190827001

Effect of Si content in welding wire on crack sensitivity of aluminum alloy joints and its mechanism

More Information
  • Received Date: August 26, 2019
  • Available Online: July 12, 2020
  • Using scanning electron microscopy, energy spectrum, and real-time acquisition of temperature fields, the effects and mechanisms of Si content in the welding wire on the sensitivity to thermal cracking of AA6063 aluminum alloy GMAW welded joints were studied. The results show that when the welding wire is pure aluminum, slender welding cracks appear in the center of the weld of the fishbone sample; when the Si content in the welding wire is 4.5% ~ 6%, the length of the crack is short, but the cracking distance is obviously increased; when the Si content in the welding wire reached 11% ~ 13%, no cracks appeared in the sample weld. With the continuous increase of Si content, the solidification temperature range of alloy prone to crack increases first and then decreases. The difference of Si content in welding wire will also affect the fluidity of molten metal at the later solidification stage, making the phase composition and morphology at the grain boundary of weld obviously different. At the same time, the increase of Si content will make the cooling rate of the joint increase first and then decrease, thus causing the stress state to change, and the thermal crack sensitivity increases first and then decreases.
  • Friedrich H E, Beeh E, Roider C. Solutions for next generation automotive lightweight concepts based on material selection and functional integration[C]// TMS World Conference, Cham: Springer, 2018.
    孙冠男. 汽车轻量化技术[J]. 汽车工程师, 2017(7): 14 − 15. doi: 10.3969/j.issn.1674-6546.2017.07.004

    Sun Guannan. Automotive lightweight technology[J]. Automotive Engineer, 2017(7): 14 − 15. doi: 10.3969/j.issn.1674-6546.2017.07.004
    Sun J. Research on situation and application prospect of automotive body sheets Al-Mg-Si based (6000 series) alloy[J]. IOP Conference Series Materials Science and Engineering, 2018, 452(2): 022082.
    Wang G, Zhao Y, Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. Journal of Materials Science & Technology, 2018(1): 73 − 91.
    Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 39 − 45.
    冯时. 6082铝合金激光填丝焊焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    阮野, 苏金龙, 乔建毅, 等. 湿度对铝合金接头裂纹敏感性的影响规律及机理[J]. 焊接学报, 2019, 40(1): 95 − 99.

    Ruan Ye, Su Jinlong, Qiao Jianyi, et al. Effect and mechanism of humidity on crack sensitivity of aluminum alloy joints[J]. Transactions of the China Welding Institution, 2019, 40(1): 95 − 99.
    Ghaini F M, Sheikhi M, Torkamany M J, et al. The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy[J]. Materials Science and Engineering: A, 2009, 519(1-2): 167 − 171. doi: 10.1016/j.msea.2009.04.056
    黄九龄, 孔谅, 王敏, 等. 纯钛TA2薄板双钨极氩弧焊焊接工艺[J]. 焊接学报, 2019, 40(9): 14 − 18.

    Huang Jiuling, Kong Liang, Wang Min, et al. Double tungsten arc welding process for pure titanium TA2 sheet[J]. Transactions of the China Welding Institution, 2019, 40(9): 14 − 18.
    Chen Y, Lei Z K, Bai R X, et al. Study on elastoplastic crack propagation behavior of laser-welded 6061 aluminum alloy using digital image correlation method[J]. IOP Conference Series Materials Science and Engineering, 2017, 281(1): 012040.
    Coniglio N, Cross C E. Mechanisms for solidification crack initiation and growth in aluminumwelding[J]. Metallurgical and Materials Transactions A, 2009, 40(11): 2718 − 2728. doi: 10.1007/s11661-009-9964-4
    王小杰. Al-Mg-Si合金激光焊接凝固裂纹形成机理研究[D]. 上海: 上海交通大学, 2015.
    农琪, 谢业东, 金长义, 等. Al-Mg-Si铝合金氩弧焊结晶裂纹形成机理的研究[J]. 热加工工艺, 2013, 42(1): 205 − 207.

    Nong Qi, Xie Yedong, Jin Changyi, et al. Study on the mechanism of crystalline crack formation in argon arc welding of Al-Mg-Si aluminum alloy[J]. Thermal Engineering, 2013, 42(1): 205 − 207.
    齐振余. Al-12.7Si-0.7Mg合金MIG焊接工艺和焊后热处理对接头组织与性能的影响[D]. 沈阳: 东北大学, 2012.
    汪认. A6N01S-T5铝合金焊接热裂纹性能评价优化研究[D]. 成都: 西南交通大学, 2017.
    Campbell J. Castings[M]. Butterworth-Heinemann, 2003.
    Katgerman L, Eskin D G. In search of the prediction of hot cracking in aluminium alloys[M]. Springer: Hot Cracking Phenomena in Welds Ⅱ, 2008.
    杨伏良, 甘卫平, 陈招科. 硅含量对高硅铝合金材料组织及性能的影响[J]. 材料导报, 2005, 19(2): 98 − 100. doi: 10.3321/j.issn:1005-023X.2005.02.029

    Yang Fuliang, Gan Weiping, Chen Zhaoke. Effect of silicon content on microstructure and properties of high silicon aluminum alloy[J]. Materials Guide, 2005, 19(2): 98 − 100. doi: 10.3321/j.issn:1005-023X.2005.02.029
    张建新, 高爱华. Si含量对6063铝合金组织性能的影响[J]. 材料热处理学报, 2008(5): 74 − 77.

    Zhang Jianxin, Gao Aihua. Effect of Si content on the structure and properties of 6063 aluminum alloy[J]. Journal of Material Heat Treatment, 2008(5): 74 − 77.
    陈定贤. 高导热铝合金设计中亚共晶Al-Si合金与共晶Al-Si合金的分析研究[J]. 资源再生, 2019(1): 55 − 57. doi: 10.3969/j.issn.1673-7776.2019.01.024

    Chen Dingxian. Analysis and research of hypoeutectic Al Si alloy and eutectic Al Si alloy in the design of high thermal conductivity aluminum alloy[J]. Resource Regeneration, 2019(1): 55 − 57. doi: 10.3969/j.issn.1673-7776.2019.01.024
    杨迎新, 张乐平, 钟建华. 提高6063铝合金导热性能的途径探讨[J]. 金属功能材料, 2004(3): 23 − 25. doi: 10.3969/j.issn.1005-8192.2004.03.007

    Yang Yingxin, Zhang Leping, Zhong Jianhua. Approach to improving the thermal conductivity of 6063 aluminum alloy[J]. Metal Functional Materials, 2004(3): 23 − 25. doi: 10.3969/j.issn.1005-8192.2004.03.007
  • Related Articles

    [1]AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
    [2]ZHANG Hua, GUO Qilong, ZHAO Changyu, LIN Sanbao, SHI Gongqi. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 1-5. DOI: 10.12073/j.hjxb.20190513001
    [3]YAN Chunyan, YUAN Yuan, ZHANG Kezhao, WU Lichao, WANG Baosen. Investigation on cold cracking susceptibility of X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 41-46. DOI: 10.12073/j.hjxb.2019400310
    [4]RUAN Ye, SU Jinlong, QIAO Jianyi, QIU Xiaoming, XING Fei. Effect of humidity on crack sensitivity of aluminum alloy weld joint and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 89-93. DOI: 10.12073/j.hjxb.2019400018
    [5]YAO Qianyu, DENG Caiyan, GONG Baoming, WANG Dongpo. The sensitivity analysis of parameters involved in engineering critical assessment for the submarine pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 41-44.
    [6]ZHANG Jingqiang, YANG Jianguo, XUE Gang, WANG Jiajie, FANG Hongyuan. Hydrogen induced cracking sensibility of welded joint based on tensile test with hydrogen pre-charging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 89-92.
    [7]ZHANG Qunbing, NIU Jing, ZHAO Pengfei, HUANG Yong, LI Zhigang, ZHANG Jianxun. Influence of preheating temperature on cold cracking sensitivity of 12Cr10Co3W2Mo heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 87-91.
    [8]ZHANG Yuanjie, PENG Yun, MA Chengyong, PENG Xinna, TIAN Zhiling, LU Jiansheng. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 53-56.
    [9]LAN Liangyun, QIU Chunlin, ZHAO Dewen, GAO Xiuhua. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 41-44.
    [10]DU Yi, ZHANG Tian-hong, ZHANG Jun-xu. Analysis on welding cold crack sensibility of 10Ni8CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 93-96.
  • Cited by

    Periodical cited type(10)

    1. 刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
    2. 税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
    3. 刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
    4. 代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 . 本站查看
    5. 王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
    6. 甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
    7. 陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
    8. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    9. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    10. 张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 . 本站查看

    Other cited types(7)

Catalog

    Article views (493) PDF downloads (43) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return