Advanced Search
SHEN Kexin, ZHANG Sicong, ZHAO Yue, LI Quan, WAN Zhandong, WU Aiping. Microstructure evolution of 2195 Al-Li alloy friction stir welded joint and enhancing performance by laser shock peening[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 19-25. DOI: 10.12073/j.hjxb.20240226002
Citation: SHEN Kexin, ZHANG Sicong, ZHAO Yue, LI Quan, WAN Zhandong, WU Aiping. Microstructure evolution of 2195 Al-Li alloy friction stir welded joint and enhancing performance by laser shock peening[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 19-25. DOI: 10.12073/j.hjxb.20240226002

Microstructure evolution of 2195 Al-Li alloy friction stir welded joint and enhancing performance by laser shock peening

More Information
  • Received Date: February 25, 2024
  • Available Online: March 27, 2025
  • To investigate the microstructure and mechanical properties of friction stir welding (FSW) joints of 2195 aluminum-lithium alloy and attempt to improve them, 6.5 mm thick 2195-T8 aluminum-lithium alloy test plates were welded using different parameters. The microstructure evolution of different zones of the joints was investigated using OM, EBSD, TEM and other analytical techniques. The mechanical properties including microhardness and tensile properties of the joints were tested and digital image correlation (DIC) was applied. The results indicate that FSW of 2195-T8 aluminum-lithium alloy can reliably produce well-formed joints within the tested parameter range, with a strength coefficient of 70% and a fracture elongation of 7%. T1 and θ' completely dissolved in the weld nugget zone while β'/δ' was formed. Strain concentration occurred in the weld nugget and shoulder affected zones during tensile testing. After double-sided laser shock peening (LSP), the yield strength of the joint increased by 51 MPa, and the fracture path shifted from the weld nugget zone to the outer side of the thermal-mechanical affected zone. The new fracture location corresponded to the region of lowest hardness as determined by hardness testing.

  • [1]
    AHMED M M Z, EL-SAYED Seleman M M, FYDRYCH D, et al. Friction stir welding of aluminum in the aerospace industry: The current progress and state-of-the-art review[J]. Materials, 2023, 16: 2971. doi: 10.3390/ma16082971
    [2]
    YANG Y, BI J, LIU H, et al. Research progress on the microstructure and mechanical properties of friction stir welded Al-Li alloy joints[J]. Journal of Manufacturing Progress, 2022, 82: 230 − 244. doi: 10.1016/j.jmapro.2022.07.067
    [3]
    李充, 田亚林, 齐振国, 等. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2022, 43(6): 102 − 107. doi: 10.12073/j.hjxb.20220104001

    LI Chong, TIAN Yalin, QI Zhenguo, et al. Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 102 − 107. doi: 10.12073/j.hjxb.20220104001
    [4]
    FONDA R W, BINGERT J F. Precipitation and grain refinement in a 2195 Al friction stir weld[J]. Metallurgical and Materials Transactions A, 2006, 37(12): 3593 − 3604. doi: 10.1007/s11661-006-1054-2
    [5]
    陈永来, 李劲风, 张绪虎, 等. 2195铝锂合金摩擦搅拌焊接头组织[J]. 中国有色金属学报, 2016, 26(5): 964 − 972.

    CHEN Yonglai, LI Jinfeng, ZHANG Xuhu, et al. Structure of friction-stir welding joint of 2195 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 964 − 972.
    [6]
    戴翔, 石磊, 武传松, 等. 2195-T6铝锂合金搅拌摩擦焊接头微观组织结构与力学性能[J]. 焊接学报, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002

    DAI Xiang, SHI Lei, WU Chuansong, et al. Microstructure and mechanical properties of 2195-T6 Al-Li alloy joint prepared by friction stir welding[J]. Transactions of the China Welding Institution, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002
    [7]
    ZHANG J, FENG X, HUANG H, et al. Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-T8 Al-Li alloy[J]. Journal of Materials Science & Technology, 2018, 34(1): 219 − 227.
    [8]
    MA Y E, XIA Z C, JIANG R R, et al. Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198-T8 aluminum-lithium alloy joints[J]. Engineering Fracture Mechanics, 2013, 114: 1 − 11. doi: 10.1016/j.engfracmech.2013.10.010
    [9]
    HAJJIOUI E A, BOUCHAÂLA K, FAQIR M, et al. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications[J]. Heliyon, 2023, 9(2): e12565.
    [10]
    GU C, YANG X, TANG W, et al. Texture features and strengthening mechanisms in welding nugget zone of SSFSWed thick-plate Al-Li alloy joint[J]. Materials Science & Engineering A, 2022, 848: 143459.
    [11]
    FONDA R W, BINGERT J F. Microstructural evolution in the heat-affected zone of a friction stir weld[J]. Metallurgical & Materials Transactions A, 2004, 35(5): 1487 − 1499.
    [12]
    王雷, 王惠苗, 马方园, 等. 2195-T8铝锂合金搅拌摩擦焊接头组织与力学性能[J]. 焊接, 2019(3): 24 − 27. doi: 10.12073/j.hj.20181016006

    WANG Lei, WANG Huimiao, MA Fangyuan, et al. Microstructure and properties of 2195 Al-Li alloy welded joints by friction stir welding[J]. Welding & Joining, 2019(3): 24 − 27. doi: 10.12073/j.hj.20181016006
    [13]
    TAO Y, NI D R, XIAO B L, et al. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints[J]. Materials Science & Engineering: A, 2017, 693(May2): 1 − 13.
    [14]
    WANG Z L, WANG B B, ZHANG Z, et al. A feasible operational parameter window for enhancement of welding speed in friction stir welding of 2195-T8 Al–Li alloy[J]. Science and Technology of Welding and Joining, 2023, 28(8): 679 − 688. doi: 10.1080/13621718.2023.2202039
    [15]
    TAO Y, ZHANG Z, XUE P, et al. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints[J]. Journal of Materials Science & Technology, 2022, 123: 92 − 112.
    [16]
    WEN F, LONG Z, XING Z, et al. The effect of laser shock peening on very high cycle fatigue properties of laser welded 2A60 aluminum alloy joints[J]. Engineering Fracture Mechanics, 2023, 290: 109537. doi: 10.1016/j.engfracmech.2023.109537
    [17]
    WAN Z, GUO W, JIA Q, et al. Effects of laser shock peening on microstructure and mechanical properties of TIG welded alloy 600 joints[J]. Material Science and Engineering: A, 2021, 808: 140914. doi: 10.1016/j.msea.2021.140914
    [18]
    YU P, WU C, SHI L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates[J]. Acta Materialia, 2021, 207: 116692. doi: 10.1016/j.actamat.2021.116692
    [19]
    SHUKLA A, BAESLACK W. Study of microstructural evolution in friction-stir welded thin-sheet Al–Cu–Li alloy using transmission-electron microscopy[J/OL]. Scripta Materialia, 2007, 56(6): 513 − 516.
    [20]
    OOSTERKAMP A, OOSTERKAMP L D, NORDEIDE A. ‘Kissing Bond' phenomena in solid-state welds of aluminum alloys[J]. Welding Journal, 2004, 83(8): 225s − 231s.
    [21]
    TAYON W A, DOMACK M S, HOFFMAN E K, et al. Texture evolution within the theromechanically affected zone of an Al-Li alloy 2195 friction stir weld[J]. Metallurgy and Materials Transactions: A, 2013, 44(11): 4906 − 4913.
  • Related Articles

    [1]WANG Jiajie, SONG Xiaoguo, WU Pengbo, HU Peipei, TENG Bin, HUANG Ruisheng, YU Jiuhao. Process, microstructures and mechanical properties of Al/Ti dissimilar metals with laser/laser-CMT hybrid welding-brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 54-60. DOI: 10.12073/j.hjxb.20220617003
    [2]HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149
    [3]ZHANG Man1, ZHANG Jun1, JIANG Teng1, ZHANG Lincai2, YANG Dachun1, HOU Yu1, WU Jing1. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 61-64. DOI: 10.12073/j.hjxb.2018390014
    [4]QIU Xiliang, WANG Qian, LIN Tiesong, HE Peng, LU Fengjiao. Effect of Al18B4O33 whiskers on microstructure evolution of intermetallic compound layer and shear behavior of soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 35-38.
    [5]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [6]QIN Fei, AN Tong, ZHONG Weixu, LIU Chengyan. Nanoindentation properties of intermetallic compounds in lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 25-28,32.
    [7]LV Shixiong, JING Xiaojun, HUANG Yongxian, CHENG Jinli, ZHENG Chuanqi. Interfacial characteristic and property of Ti/Al dissimilar alloys joint with arc welding-brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 23-26.
    [8]ZHOU Yong, YANG Guanjun, WANG Hongduo, LI Geng, LI Changjiu. Effect of annealing treamenton formation of intermetallic phase in cold-sprayed Ni/Ti mechanical alloying coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 45-48.
    [9]ZHANG De-ku, ZOU Gui-sheng, WU Ai-ping, LIU Gen-mao. Effect of Ti on the micro structures and properties of ceramic bonded joints with in term etallic compounds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 9-11.
    [10]SUO Jin ping, FENG Di, LUO He li, CUI Kun. Microstructure and properties of intermetallic composites fabricated by surdfacing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 44-47.

Catalog

    Article views (64) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return