Advanced Search
GAO Wenqiang, XU Fei, MA Xuyi, GUO Luyun, LU Yiting. The effect of heat input on the microstructure and mechanical properties of 7075-T6 ultra-high strength aluminum alloy weld by laser wire filling welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 128-136. DOI: 10.12073/j.hjxb.20231215002
Citation: GAO Wenqiang, XU Fei, MA Xuyi, GUO Luyun, LU Yiting. The effect of heat input on the microstructure and mechanical properties of 7075-T6 ultra-high strength aluminum alloy weld by laser wire filling welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 128-136. DOI: 10.12073/j.hjxb.20231215002

The effect of heat input on the microstructure and mechanical properties of 7075-T6 ultra-high strength aluminum alloy weld by laser wire filling welding

More Information
  • Received Date: December 14, 2023
  • Available Online: January 21, 2025
  • High quality connection of 2.0 mm thick 7075-T6 ultra-high strength aluminum alloy was achieved using laser wire filling welding, and the effect of heat input on the microstructure and mechanical properties of ultra-high strength aluminum alloy welds was studied. The microstructure of the 7075-T6 aluminum alloy weld by laser wire filling welding was a typical cast structure. The central area of the weld was a relatively large equiaxed dendritic structure with no obvious texture, and the strengthening phase particles in the weld could not be fully precipitated, resulting in a certain degree of decrease in joint strength. With the increase of heat input, the melting zone and melting width of the weld cross-section gradually increased, while the microstructure and texture characteristics of equiaxed dendrites at the center of the weld did not show significant changes. The grain size of the central area of the weld first rapidly increased and then slowly increased. The microhardness distribution of joints under different heat input conditions was basically the same, and the areas with the most severe softening were all in the weld zone. With the increase of heat input, the tensile strength of joints firstly increased and then decreased. By regulating the heat input of laser wire filling welding, the strength coefficient of 7075 aluminum alloy joints could reach 74.9%.

  • [1]
    Li Y, Wang Y, Lu B, et al. Effect of Cu content and Zn/Mg ratio on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys[J]. Journal of Materials Research and Technology, 2022, 19: 3451 − 3460. doi: 10.1016/j.jmrt.2022.06.059
    [2]
    臧金鑫, 陈军洲, 韩凯, 等. 航空铝合金研究进展与发展趋势[J]. 中国材料进展, 2022, 41(10): 769 − 777.

    Zang Jinxin, Chen Junzhou, Han Kai, et al. Research progress and development tendency of aeronautical aluminum alloys[J]. Materials China, 2022, 41(10): 769 − 777.
    [3]
    Huang R S, Li M N, Yang H F, et al. Effects of Mg contents on microstructures and second phases of as-cast Al–Zn–Mg–Cu alloys[J]. Journal of Materials Research and Technology, 2022, 21: 2105 − 2117. doi: 10.1016/j.jmrt.2022.10.050
    [4]
    杨光, 邹文北, 王超, 等. 激光增材连接异质铝合金的组织及性能研究[J]. 中国激光, 2022, 49(22): 123 − 130.

    Yang Guang, Zou Wenbei, Wang Chao, et al. Microstructure and properties of laser additive jointing heterogeneous aluminum alloys[J]. Chinese Journal of Lasers, 2022, 49(22): 123 − 130.
    [5]
    Deng A L, Chen H, Zhang Y B, et al. Effect of filler materials on the porosity formation of aluminum alloy by laser welding with filler wire[J]. Optics & Laser Technology, 2023, 159: 109000.
    [6]
    Song Y X, Xiao M Z, Huang D C, et al. Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding[J]. China Welding, 2024, 33(2): 23 − 30.
    [7]
    Teyeb A, Silva J, Kanfoud J, et al. Improvements in the microstructure and mechanical properties of aluminium alloys using ultrasonic-assisted laser welding[J]. Metals, 2022, 12(6): 1041. doi: 10.3390/met12061041
    [8]
    Ma B, Gao X D, Huang Y J, et al. A review of laser welding for aluminium and copper dissimilar metals[J]. Optics & Laser Technology, 2023, 167: 109721.
    [9]
    El-Batahgy A, Klimova-Korsmik O, Akhmetov A, et al. High-power fiber laser welding of high-strength AA7075-T6 aluminum alloy welds for mechanical properties research[J]. Materials, 2021, 14(24): 7498. doi: 10.3390/ma14247498
    [10]
    Xu T Y, Zhou S W, Ma X Q, et al. Significant reinforcement of mechanical properties in laser welding aluminum alloy with carbon nanotubes added[J]. Carbon, 2022, 191: 36 − 47. doi: 10.1016/j.carbon.2022.01.033
    [11]
    Bunaziv I, Akselsen O M, Ren X B, et al. Laser beam and laser-arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150. doi: 10.3390/met11081150
    [12]
    Zhang L, Li X Y, Nie Z R, et al. Microstructure and mechanical properties of a new Al–Zn–Mg–Cu alloy joints welded by laser beam[J]. Materials & Design, 2015, 83: 451 − 458.
    [13]
    刘红兵, 陶汪, 陈洁, 等. 激光填丝焊焊丝熔入行为特征[J]. 焊接学报, 2013, 34(11): 73 − 77.

    Liu Hongbing, Tao Wang, Chen Jie, et al. Filler wire melting dynamics during laser beam welding with filler wire[J]. Transactions of the China Welding Institution, 2013, 34(11): 73 − 77.
    [14]
    Huang W H, Chen S J, Xiao J, et al. Investigation of filler wire melting and transfer behaviors in laser welding with filler wire[J]. Optics & Laser Technology, 2021, 134: 106589.
    [15]
    Saheed A, Loginova I, Khalil A, et al. Effect of laser welding process parameters and filler metals on the weldability and the mechanical properties of AA7020 aluminium alloy[J]. Journal of Manufacturing and Materials Processing, 2018, 2(2): 33. doi: 10.3390/jmmp2020033
    [16]
    刘源, 李悦, 王建峰, 等. 热输入对2219铝合金激光镜像焊接匙孔动态特征的影响[J]. 焊接学报, 2023, 44(6): 103 − 110.

    Liu Yuan, Li Yue, Wang Jianfeng, et al. The effect of heat input on the dynamic characteristic of keyhole during laser mirror welding of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2023, 44(6): 103 − 110.
    [17]
    Zhao Y Q, Zhan X H, Zhou X D, et al. Effect of heat input on macro morphology and porosity of laser-MIG hybrid welded joint for 5A06 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(11): 4035 − 4045.
    [18]
    Liu F C, Zhu X Z, Ji S X. Effects of Ni on the microstructure, hot tear and mechanical properties of Al-Zn-Mg-Cu alloys under as-cast condition[J]. Journal of Alloys and Compounds, 2020, 821: 153458. doi: 10.1016/j.jallcom.2019.153458
    [19]
    Han R H, Lu S P, Dong W C, et al. The morphological evolution of the axial structure and the curved columnar grain in the weld[J]. Journal of Crystal Growth, 2015, 431: 49 − 59. doi: 10.1016/j.jcrysgro.2015.09.001
  • Related Articles

    [1]LI Xiao, DU Yahong, GAO Liyin, YUAN Xiaohong, ZHOU Wenyan, KANG Feifei, LIU Zhiquan. Influence of plasma cleaning on the surface state and mechanical properties of Cu/Al wire bonding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 14-19. DOI: 10.12073/j.hjxb.20231020002
    [2]GUAN Ruofei, JIA Qiang, ZHAO Jin, ZHANG Hongqiang, WANG Yishu, ZOU Guisheng, GUO Fu. Research progress in high-performance power device packaging and power cycle reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 124-136. DOI: 10.12073/j.hjxb.20230613015
    [3]CHI Dazhao, GUO Tao, ZHANG Runqi, ZHANG Tao, SHEN Hao. Study on real-time imaging detection of bonding defects by acoustic impedance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 107-111. DOI: 10.12073/j.hjxb.20220702001
    [4]XU Yan, LIU Yinglai, NIE Xianghui, FENG Zhenjun, LI Liang, YANG Fengping. Analysis of mechanical properties and application effect of over-matching lap angle weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 101-105. DOI: 10.12073/j.hjxb.20211021001
    [5]HE Xiaodong, GAO Xiongxiong, David Han, CHI Qiang, HUO Chunyong, José B. Bacalhau. Performance and strain evolution of different strength matching girth welds of high Nb X80 pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 34-39. DOI: 10.12073/j.hjxb.20210330004
    [6]QIN Guoliang, FENG Chao, JIANG Haihong, JIANG Zili, GENG Peihao. Microstructure and properties of weld by high-speed tandem TIG welding of different arc power matching[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 39-44. DOI: 10.12073/j.hjxb.2019400285
    [7]NIU Yong, SONG Yonglun, ZENG Zhoumo. Resonance phenomenon of small current pulsed TIG arc and analysis of AC impedance features[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 13-16.
    [8]YANG Yunzhen, WANG Guilan, ZHANG Haiou, XIA Weisheng. Preparation and complex impedance analysis of functionally gradient PEN for MOLB-type SOFC by plasma spraying digital forming[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 13-16.
    [9]CAO Lei, SUN Qian, ZONG Pei, FAN Ming-qi. Characteristis and sorting method of equal strength matched welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 81-84.
    [10]LI Jie, ZHANG Yu-feng, HUO Li-xing, WANG Dong-po. Effect of strength match on damage performance of welded connection under the seismic loading[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 27-30.
  • Cited by

    Periodical cited type(2)

    1. 曹润平,韩永全,刘晓虎,洪海涛,韩蛟. 稀土铈对电弧及熔滴过渡行为的影响. 焊接学报. 2025(01): 95-102 . 本站查看
    2. 刘景武,张蕾,杜义,孙磊,王杏华,张晓,董星. 785 MPa及以上高强钢焊接材料的研发现状与展望. 精密成形工程. 2025(02): 62-75 .

    Other cited types(0)

Catalog

    Article views (47) PDF downloads (18) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return