Advanced Search
LYU Xiaoqing, ZOU Wenjie, XU Lianyong. Simulation of CMT welding source based on Saber[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 7-13, 44. DOI: 10.12073/j.hjxb.20231107004
Citation: LYU Xiaoqing, ZOU Wenjie, XU Lianyong. Simulation of CMT welding source based on Saber[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 7-13, 44. DOI: 10.12073/j.hjxb.20231107004

Simulation of CMT welding source based on Saber

More Information
  • Received Date: November 06, 2023
  • Available Online: December 09, 2024
  • In order to explore the cold metal transfer mechanism of aluminum alloy, the droplet transition process was analyzed, and a droplet transfer model was constructed using Mast language. The instantaneous wire feed speed was measured, and the change curve of wire feed speed in CMT transition period was given. Combined with the circuit structure of the arc welding power supply, a simulation platform for the main circuit and control circuit of the CMT welding source was established using Saber software. Through this platform, the simulation of non-united welding with changing boost duration time was carried out. The simulation of electrical signal was compared with the measurement, and the parameter errors of current, voltage, transition frequency ,droplet volume and wire feed speed were discussed. The results showed that the errors between the simulation and the measurement are also less than 10%, which confirmed the accuracy of the CMT simulation platform. It lays a preliminary foundation for understanding the physical process of CMT and optimizing the process parameters.

  • [1]
    Feng J, Zhang H, He P. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding[J]. Materials & Design, 2009, 30(5): 1850 − 1852.
    [2]
    Wang Y, Wang L, Lü X. Simulation of dynamic behavior and prediction of optimal welding current for short-circuiting transfer mode in GMAW[J]. Journal of Manufacturing Science and Engineering-ASME, 2016, 138(6): 061011. doi: 10.1115/1.4032259
    [3]
    Valchev V C, Mareva D D, Yudov D D, et al. Inverter current source for pulse-arc welding with improved parameters[A]. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)[C]. Opatija, Croatia: IEEE, 2017: 130–135.
    [4]
    Doodman Tipi A R, Hosseini Sani S K, Pariz N. Frequency control of the drop detachment in the automatic GMAW process[J]. Journal of Materials Processing Technology, 2015, 216: 248 − 259. doi: 10.1016/j.jmatprotec.2014.09.018
    [5]
    苏东东, 吕小青, 王莹. 基于能量平衡短路过渡动态过程的仿真[J]. 焊接学报, 2015, 36(11): 77 − 80.

    Su Dongdong, Lü Xiaoqing, Wang Ying. A dynamic simulation model of short circuit transfer based on energy balance[J]. Transactions of the China Welding Institution, 2015, 36(11): 77 − 80.
    [6]
    Yang S, Xing Y, Yang F, et al. Complex behavior of droplet transfer and spreading in cold metal transfer[J]. Shock and Vibration, 2020, 2020(12): 6650155.1 − 6650155.11.
    [7]
    Rahul S G, Dhivyasri G, Kavitha P, et al. Model reference adaptive controller for enhancing depth of penetration and bead width during cold metal transfer joining process[J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 122 − 134. doi: 10.1016/j.rcim.2018.03.013
    [8]
    Mao W, Ushio M. Measurement and theoretical investigation of arc sensor sensitivity in dynamic state during gas metal arc welding[J]. Science and Technology of Welding and Joining, 1997, 2(5): 191 − 198. doi: 10.1179/stw.1997.2.5.191
    [9]
    袁磊. 铝合金交流脉冲熔化极气体保护焊工艺研究[D]. 上海: 上海交通大学, 2012.

    Yuan Lei. The research of alternative current pulse gas metal arc welding technology in aluminum alloys[D]. Shanghai: Shanghai Jiao Tong University, 2012.
    [10]
    樊飞. 7050铝合金电阻率及Al、Cu、Ti磁化率研究[D]. 沈阳: 东北大学, 2008.

    Fan Fei. Study on the resistivity of 7050 aluminum alloy and susceptibility of Al, Cu and Ti[D]. Shenyang: Northeastern University, 2008.
    [11]
    朱志明, 吴文楷, 陈强. 短路过渡CO2焊接熔滴尺寸控制[J]. 焊接学报, 2007, 28(4): 1 − 4.

    Zhu Zhiming, Wu Wenkai, Chen Qiang. Molten droplet size control in short-circuiting CO2 arc welding[J]. Transactions of the China Welding Institution, 2007, 28(4): 1 − 4.
    [12]
    Zhu Z, Wu W, Chen Q. Random nature of droplet size and its origins in short circuit CO2 arc welding[J]. Science and Technology of Welding and Joining, 2005, 10(6): 636 − 642. doi: 10.1179/174329305X48356
    [13]
    冯曰海, 卢振洋, 刘嘉, 等. 全数字控制CO2焊Matlab/Simulink建模与仿真[J]. 焊接学报, 2005, 26(7): 27 − 32.

    Feng Yuehai, Lu Zhenyang, Liu Jia, et al. Modeling and simulation of full digital controlled CO2 arc welding system based on Matlab /Simulink[J]. Transactions of the China Welding Institution, 2005, 26(7): 27 − 32.
    [14]
    Yan Z, Zhao Y, Jiang F, et al. Metal transfer behaviour of CMT-based step-over deposition in fabricating slant features[J]. Journal of Manufacturing Processes, 2021, 71: 147 − 155. doi: 10.1016/j.jmapro.2021.09.027
    [15]
    Choi J H, Lee J Y, Yoo C D. Simulation of dynamic behavior in a GMAW system[J]. Welding Journal, 2001, 80(10): 239s − 245s.
    [16]
    Chen G Q, Liu J P, Shu X, et al. Numerical simulation of keyhole morphology and molten pool flow behavior in aluminum alloy electron-beam welding[J]. International Journal of Heat and Mass Transfer, 2019, 138: 879 − 888. doi: 10.1016/j.ijheatmasstransfer.2019.04.112
    [17]
    Planckaert J P, Djermoune E H, Brie D, et al. Modeling of MIG/MAG welding with experimental validation using an active contour algorithm applied on high speed movies[J]. Applied Mathematical Modelling, 2010, 34(4): 1004 − 1020. doi: 10.1016/j.apm.2009.07.011
    [18]
    张栋. 波形参数对高速CMT焊接稳定性及焊缝成形影响的研究[D]. 济南: 山东大学, 2016.

    Zhang Dong. Research on the effect of waveform parameters on welding stability and welding formation in high speed CMT welding[D]. Jinan: Shandong University, 2016.
  • Related Articles

    [1]HAN Hongbiao, ZHANG Peng, YAN Chenxiao, HU Jiayang. Influence of Wire Feeding Mode on Formation of Single-pass Multilayer Inclined Parts in Laser Wire Additive Manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20241012001
    [2]YANG Xin, HAN Hongbiao, YAN Chenxiao, WANG Rui. Effect of wire feeding angle and wire feeding mode on the formation of single-track laser wire deposition layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 43-48, 56. DOI: 10.12073/j.hjxb.20230324002
    [3]ZHOU Xiangman, FU Zichuan, BAI Xingwang, TIAN Qihua, FANG Dong, FU Junjian, ZHANG Haiou. Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 109-116. DOI: 10.12073/j.hjxb.20220603001
    [4]ZHANG Kezhao, CAI Jiameng, LIU Dong, CHEN Jinyi, BAO Yefeng, NIU Hongzhi. Effect of wire feed rate on microstructure and properties of laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 35-40. DOI: 10.12073/j.hjxb.20211106001
    [5]ZHANG Dong1,2, CHEN Maoai1, WU Chuansong1. Optimization of waveform parameters for high speed CMT welding of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 118-122. DOI: 10.12073/j.hjxb.2018390027
    [6]ZHU Xiaoyang, LI Huan, HUANG Chaoqun, YANG Ke, NI Yanbing, WANG Guodong. Analysis of droplet transfer and weld appearance in pulsed wire feeding MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 59-63.
    [7]SU Zhiting, LI Huan, WEI Huiliang, ZHANG Yuchang. Improvement of laser on metal transfer in pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 91-95.
    [8]QIN Jian, LÜ Xiaochun, DU Bing, HU Zhongquan. Factors afTecting welded joints geometry in temper bead welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 17-20.
    [9]DU Hongwang, LIU Zheng, ZHAO Yanan, XU Jianwei, LIU Gang. Fuzzy PI speed control for welding wire feed system based on state observer and feedforward[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 85-88,92.
    [10]Cao Daojun, Xu Jida, Ji Yonggui, Zang Xintao, Yang Guanghua, Liu Minghang. CHARACTERISTICS OF CO2 SHIELDED ARC WELDING PROCESS WITH SEMIPERIOD PULSE WIRE FEED[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1984, (1): 43-51.
  • Cited by

    Periodical cited type(9)

    1. 张玉碧,杨晓亮,许倩影,吴洋,黄全振,熊超健. 时效态GH925/625合金焊接力学性能及应力腐蚀研究. 功能材料. 2025(04): 4096-4102+4127 .
    2. 彭靖,张嘉艺,吴若琛,袁名全,蔡华淋. 不同电子束焊接参数对GH4169和IC10镍基高温合金组织和力学性能的影响. 有色金属科学与工程. 2024(05): 716-722 .
    3. 刘晓芳,常云峰,秦建,沈元勋,钟素娟. 镍基高温合金焊接工艺研究进展. 焊接. 2024(12): 47-55 .
    4. 张玉碧,杨晓亮,赵晨旭,张煊旸. 固溶时效态GH925/Inconel625异种合金焊接力学性能研究. 功能材料. 2023(02): 2211-2216 .
    5. 赵丽,董爱锋,姚佳业,薛子腾,武志刚. 镍基合金电子束表面改性组织及摩擦性能研究. 兵器材料科学与工程. 2023(05): 34-40 .
    6. 魏立华,杨志海,贺德先,张斌,祁梦玲,张建晓. 真空电子束焊接在镍基合金空冷器制造中的应用. 压力容器. 2022(07): 81-86 .
    7. 秦作伟,张嘉颢,胡海军,王丛元,李建华,王志刚,张建晓. 石化装置用工业纯钛电子束焊接头组织及力学性能. 中国化工装备. 2022(05): 26-30 .
    8. 褚强,谢红,李文亚,杨夏炜,陈海燕,范文龙. 高温合金熔焊接头组织性能研究现状. 铸造技术. 2022(11): 955-963 .
    9. 苏允海,杨太森,戴志勇,王英第,梁学伟,武兴刚. Inconel 625熔敷金属抗Cl~-腐蚀行为分析. 焊接学报. 2021(06): 64-70+100-101 . 本站查看

    Other cited types(2)

Catalog

    Article views (95) PDF downloads (37) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return