Advanced Search
ZHANG Kezhao, CAI Jiameng, LIU Dong, CHEN Jinyi, BAO Yefeng, NIU Hongzhi. Effect of wire feed rate on microstructure and properties of laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 35-40. DOI: 10.12073/j.hjxb.20211106001
Citation: ZHANG Kezhao, CAI Jiameng, LIU Dong, CHEN Jinyi, BAO Yefeng, NIU Hongzhi. Effect of wire feed rate on microstructure and properties of laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 35-40. DOI: 10.12073/j.hjxb.20211106001

Effect of wire feed rate on microstructure and properties of laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire

More Information
  • Received Date: November 05, 2021
  • Available Online: November 09, 2022
  • The Ti-6Al-4V(TC4) filler wire was used to join 2 mm thick Ti-3Al-6Mo-2Fe-2Zr titanium alloy during laser welding process. Investigations concerning the influence of wire feeding rate on microstructure and tensile properties were conducted on laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire by optical microscope, scanning electron microscope, and X ray energy spectrometer and other analytical testing methods. The results show that, due to the decreasing heat effect from fusion line to base metal, the microstructure of the heat affected zone is divided as follows: single β region, primary α + matrix β region, and primary α + retained secondary α + matrix β region. Acicular α' phase is formed in the fusion zone, and the distribution is not uniform. As the wire feed speed increases, the number and size of acicular α' phase increases. The tensile strength and elongation of laser welded joints with filler wire are lower than those of the base metal. With the increase of wire feeding rate, the tensile strength of the joint increases and the elongation decreases. The reason is attributed to that, as the wire feeding rate increased, the [Mo]eq in the fusion zone decreased correspondingly, which led to the increment in the number and size of α' phase. When the wire feeding rate was higher than 1.0 m/min, the fracture location changed from fusion zone to heat affected zone because of the strengthening effects of α' phase.
  • 李娜, 杜随更, 王松林, 等. TiAl合金与GH3039高温合金的摩擦焊接[J]. 焊接学报, 2020, 41(6): 6 − 11. doi: 10.12073/j.hjxb.20190717003

    Li Na, Du Suigeng, Wang Songlin, et al. Friction welding of Ti Al alloy and superalloy GH3039[J]. Transaction of China Welding Institution, 2020, 41(6): 6 − 11. doi: 10.12073/j.hjxb.20190717003
    孟圣昊, 司昌健, 任逸群, 等. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40 − 47. doi: 10.12073/j.hjxb.20201124001

    Meng Shenghao, Si Changjian, Ren Yiqun, et al. Laser welding characteristics of TC4 titanium alloy in vacuum environment[J]. Transaction of China Welding Institution, 2021, 42(8): 40 − 47. doi: 10.12073/j.hjxb.20201124001
    牛超楠, 宋晓国, 胡胜鹏, 等. 钎焊温度对TC4/Ti60接头组织及性能的影响[J]. 焊接学报, 2018, 39(6): 77 − 80. doi: 10.12073/j.hjxb.2018390153

    Niu Chaonan, Song Xiaoguo, Hu Shengpeng, et al. Effect of brazing temperature on the interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. Transaction of China Welding Institution, 2018, 39(6): 77 − 80. doi: 10.12073/j.hjxb.2018390153
    Akhtar Awais, Dong Honggang, Xia Yueqing, et al. Lap joining 5052 aluminum alloy to Ti6Al4V titanium alloy by GTAW process with Al Si12 filler wire[J]. China Welding, 2020, 29(3): 1 − 8.
    张可召, 何超威, 戚宋歌, 等. 热处理对激光焊接β钛合金组织及性能的影响[J]. 电焊机, 2020, 39(6): 59 − 64. doi: 10.7512/j.issn.1001-2303.2020.12.13

    Zhang Kezhao, He Chaowei, Qi Songge, et al. Influence of heat treatment on microstructure and properties of laser welded β titanium alloy[J]. Electric Welding Machine, 2020, 39(6): 59 − 64. doi: 10.7512/j.issn.1001-2303.2020.12.13
    Zhang L J, Pei J Y, Long J, et al. Effects of laser welding and post-weld heat treatment on microstructure and mechanical properties of aged Ti55531 alloy[J]. Materials, 2018, 11(10): 1907 − 1921. doi: 10.3390/ma11101907
    Sabol J C, Pasang T, Misiolek W Z, et al. Localized tensile strain distribution and metallurgy of electron beam welded Ti-5Al-5V-5Mo-3Cr titanium alloys[J]. Journal of Materials Processing Technology, 2012, 212(11): 2380 − 2385. doi: 10.1016/j.jmatprotec.2012.06.023
    Anis A L, Talari M K, Kishore Babu N, et al. Grain refinement of Ti-15V-3Cr-3Sn-3Al metastable β titanium alloy welds using boron-modified fillers[J]. Journal of Alloys and Compounds, 2018, 749: 320 − 328. doi: 10.1016/j.jallcom.2018.03.286
    曹海涛, 张鹏, 杜云慧, 等. Mg-Gd-Y-Zr激光焊接工艺优化及高温力学性能[J]. 焊接学报, 2020, 41(10): 87 − 96. doi: 10.12073/j.hjxb.20200221001

    Cao Haitao, Zhang Peng, Du Yunhui, et al. Optimization of Mg-Gd-Y-Zr laser welding process parameters and study on high temperature mechanical properties[J]. Transaction of China Welding Institution, 2020, 41(10): 87 − 96. doi: 10.12073/j.hjxb.20200221001
    王磊, 许雪宗, 王克鸿, 等. 中厚板7A52铝合金光纤激光焊接接头组织与性能[J]. 焊接学报, 2020, 41(10): 28 − 31. doi: 10.12073/j.hjxb.20200518001

    Wang Lei, Xu Xuezong, Wang Kehong, et al. Microstructures and mechanical properties of fiber laser beam welded 7A52 alloy joint[J]. Transaction of China Welding Institution, 2020, 41(10): 28 − 31. doi: 10.12073/j.hjxb.20200518001
    Shariff T, Cao X, Chromik R R, et al. Effect of joint gap on the quality of laser beam welded near-β Ti-5553 alloy with the addition of Ti-6Al-4V filler wire[J]. Journal of Materials Science, 2012, 47(2): 866 − 875. doi: 10.1007/s10853-011-5866-0
    Wan Mingpan, Wen Xin, Ma Rui, et al. Microstructural evolution and continuous cooling transformation diagram in Ti-1300 alloy under continuous cooling condition[J]. Rare Metal Materials and Engineering, 2019, 48: 97 − 103.
    张平平, 王庆娟, 高颀, 等. 高强β钛合金研究和应用现状[J]. 热加工工艺, 2012, 41(14): 51 − 55. doi: 10.3969/j.issn.1001-3814.2012.14.014

    Zhang Pingping, Wang Qingzhuan, Gao Qi, et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012, 41(14): 51 − 55. doi: 10.3969/j.issn.1001-3814.2012.14.014
    Hui Y, Li W, Li S, et al. Phase transformation mechanism and microstructure evolution of TC4 alloy during continuous cooling[J]. Physics of Metals and Metallography, 2020, 121(14): 1375 − 1381. doi: 10.1134/S0031918X20140185
    Xu W, Jun Ma, Luo Y, et al. Microstructure and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 160 − 170. doi: 10.1016/S1003-6326(19)65188-5
    Li D, Hu S, Shen J, et al. Microstructure and mechanical properties of laser-welded joints of Ti-22Al-25Nb/TA15 dissimilar titanium alloys[J]. Journal of Materials Engineering and Performance, 2016, 25(5): 1880 − 1888. doi: 10.1007/s11665-016-2025-4
    Lei Z L, Dong Z J, Chen Y B, et al. Microstructure and mechanical properties of laser welded Ti–22Al–27Nb/TC4 dissimilar alloys[J]. Materials Science and Engineering:A, 2013, 559: 909 − 916. doi: 10.1016/j.msea.2012.09.057
  • Related Articles

    [1]JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002
    [2]YANG Shangqing, XU Lianyong, ZHAO Lei, HAN Yongdian, JING Hongyang. Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003
    [3]HAN Yongdian, ZHANG Zhaofu, XU Lianyong, ZHAO Lei, JING Hongyang. Study on high temperature low cycle fatigue behavior of P92 steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 11-14. DOI: 10.12073/j.hjxb.2019400063
    [4]KONG Da, ZHANG Liang, YANG Fan. Fatigue life prediction of SnAgCu-X solder joints based on Anand model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 17-21. DOI: 10.12073/j.hjxb.20170404
    [5]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [6]ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108.
    [7]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [8]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [9]DING Yanchuang, ZHAO Wenzhong. Stiffness coordination strategy for increasing fatigue life and its application in welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 31-34.
    [10]Li Zhen, Zheng Xiulin. Prediction of Fatigue Life for Peened Butt Welds of 16Mn Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 151-158.

Catalog

    Article views (322) PDF downloads (90) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return