Processing math: 0%
Advanced Search
ZHANG Nan, XU Yifei, DU Borui, WANG Miaohui. Microstructure and interfacial stress of M2 coating prepared by UHSLC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 88-96. DOI: 10.12073/j.hjxb.20231026001
Citation: ZHANG Nan, XU Yifei, DU Borui, WANG Miaohui. Microstructure and interfacial stress of M2 coating prepared by UHSLC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 88-96. DOI: 10.12073/j.hjxb.20231026001

Microstructure and interfacial stress of M2 coating prepared by UHSLC

More Information
  • Received Date: October 25, 2023
  • Available Online: August 18, 2024
  • The M2 HSS coating was prepared on the surface of 42CrMo steel substrate using ultra-high speed laser cladding (UHSLC). The microstructure and characteristics of the M2 coating were investigated by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The projected contact area of Bohrer-nanoindentation was measured and corrected to calculate in combination with atomic force microscopy (AFM), and the residual stress distribution of the M2 coating in the direction of thickness was obtained. The results showed that the M2 coating prepared by UHSLC had a low dilution rate and formed a cladding interface with a width of about 1 ~ 2 μm, and the interface metallurgy was well bonded. The M2 microstructure near the interface was predominantly equiaxial, with a large amount of lamellar martensite in the intermediate zone, and the subsurface zone consisted of intracrystalline nanoscale acicular martensite + grain boundary "basket net"-like carbides. The "basket net"-like carbides were composed of unstable V4C3 and unstable Cr3(W10C3)2, in accordance with parallel orientation relationships of [¯5¯153]V4C3and (015)_{\mathrm{V}_4 \mathrm{C}_3} \|(\overline{1} \; 15)_{\mathrm{Cr}_3\left(\mathrm{W}_{10} \mathrm{C}_3\right)_2} . The projected contact area of Bohrer-nanoindentation introduced by pile-up was corrected and the obtained information on residual stresses at the M2 cladding interface was in good agreement with the G&S (Giannakopoulos & Suresh) energy method. After the residual tensile stress near the M2 cladding interface reached a peak value of about 300 MPa, it showed a steep decrease in stress within the heat affected zone (HAZ) of the 42CrMo steel and subsequently entered the compressive stress state.

  • [1]
    Chen N, Chen L W, Teng H, et al. A modified M2 high-speed steel enhanced by in-situ synthesized core-shell MC carbides[J]. Journal of Central South University, 2024, 31(1): 84 − 100. doi: 10.1007/s11771-023-5500-8
    [2]
    刘立培, 陈皓, 杨仁人, 等. 基体预热对激光熔覆制备M2钢熔覆层表面硬度均匀性的影响[J]. 中国激光, 2024, 51(20): 2002201.

    Liu Lipei, Chen Hao, Yang Renren, et al. Effect of substrate preheating on the uniformity of surface hardness of M2 cladding layer prepared by laser cladding[J]. Chinese Journal of Lasers, 2024, 51(20): 2002201.
    [3]
    Jiang J, Yang Z, Mao D K, et al. Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on 42CrMo steel roller[J]. Materials, 2018, 11(10): 2061 doi: 10.3390/ma11102061
    [4]
    张声伟. M2高速钢等离子熔覆层的超固溶析出行为及红硬性研究[D]. 贵阳: 贵州大学, 2020.

    Zhang Shengwei. Study on super solid solution precipitation behavior and red hardness of plasma cladding layer of M2 high speed steel [D]. Guiyang: Guizhou university, 2020.
    [5]
    刘春泉, 熊芬, 彭龙生, 等. 超高速激光熔覆技术的最新研究进展(一)——关键技术特点及优势, 设备研发及其技术参数[J]. 材料导报, 38(17): 23020075.

    Liu Chunquan, Xiong Fen, Peng Longsheng, et al. The latest research progress of extreme high-speed laser material deposition—I. Key technical features and advantages, equipment development and technical parameters[J]. Materials Reports, 38(17): 23020075.
    [6]
    Lü H, Liu Y, Chen H, et al. Temperature field simulation and microstructure evolution of Fe-based coating processed by extreme high-speed laser cladding for re-manufacturing locomotive axle[J]. Surface & Coatings Technology, 2023, 464: 129529.
    [7]
    Ding Y H, Bi W Y, Zhong C et al. A comparative study on microstructure and properties of ultra-high-speed laser cladding and traditional laser cladding of Inconel625 coatings[J]. Materials, 2022, 15(18): 6400. doi: 10.3390/ma15186400
    [8]
    Shen B W, Du B R, Wang M H, et al. Comparison on microstructure and properties of stainless steel layer formed by extreme high-speed and conventional laser melting deposition[J]. Frontiers in Materials, 2019, 6: 248 − 256. doi: 10.3389/fmats.2019.00248
    [9]
    徐一斐, 张楠, 许培鑫, 等. EHLA原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理[J/OL]. 金属学报, 10.11900/0412.1961. 2023.00356.

    Xu Yifei, Zhang Nan, Xu Peixin, et al. Interfacial characterization and surface wear mechanism of in situ Ti(C, B)/Ni60A composite coating prepared by EHLA [J/OL]. Acta Metallurgica Sinica, 10.11900/0412.1961. 2023.00356.
    [10]
    Li T C, Zhang L L, Chen G, et al. Eigenstrain reconstruction of residual stress and its application in extreme high-speed laser material deposition[J]. Journal of Manufacturing Processes, 2023, 85: 1054 − 1065. doi: 10.1016/j.jmapro.2022.11.078
    [11]
    郭永明, 叶福兴, 祁航. 超高速激光熔覆技术研究现状及发展趋势[J]. 中国表面工程, 2022, 35(6): 39 − 50. doi: 10.11933/j.issn.1007-9289.20211112003

    Guo Yongming, Ye Fuxing, Qi Hang, et al. Research status and development of ultra-high speed laser cladding[J]. China Surface Engineering, 2022, 35(6): 39 − 50. doi: 10.11933/j.issn.1007-9289.20211112003
    [12]
    李莉佳. 残余应力下金属材料压痕响应的仿真分析与试验研究[D]. 长春: 吉林大学, 2021.

    Li Lijia. Simulation analysis and experimental research on indentation response of metal materials under residual stresses[D]. Changchun: Jilin University, 2021.
    [13]
    Weikert T, Wartzack S, Baloglu M V, et al. Evaluation of the surface fatigue behavior of amorphous carbon coatings through cyclic nanoindentation[J]. Surface & Coatings Technology, 2021, 407: 126769.
    [14]
    Schlech T, Horn S, Wijayawardhana C, et al. Experimental and FEM based investigation of the influence of the deposition temperature on the mechanical properties of SiC coatings[J]. Journal of Advanced Ceramics, 2021, 10(1): 139 − 151. doi: 10.1007/s40145-020-0429-y
    [15]
    王宇迪, 王鹤峰, 杨尚余, 等. 纳米压痕技术及其在薄膜/涂层体系中的应用[J]. 表面技术, 2022, 51(6): 138 − 159.

    Wang Yudi, Wang Hefeng, Yang Shangyu, et al. Nanoindentation technique and its application in film/coating system[J]. Surface Technology, 2022, 51(6): 138 − 159.
    [16]
    Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation[J]. Scripta Materialia, 1999, 40(10): 1191 − 1198. doi: 10.1016/S1359-6462(99)00011-1
    [17]
    Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal Materials Research, 1992, 7(6): 1564 − 1583. doi: 10.1557/JMR.1992.1564
    [18]
    彭光健, 张泰华. 表面残余应力的仪器化压入检测方法研究进展[J]. 力学学报, 2022, 54(8): 2287 − 2303. doi: 10.6052/0459-1879-22-222

    Peng Guangjian, Zhang Taihua. Progress in instrumented indentation methods for determination of surface residual stress[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2287 − 2303. doi: 10.6052/0459-1879-22-222
    [19]
    李莉佳, 李虹瑞, 谢朋书, 等. 残余应力对材料循环压痕响应的影响[J/OL]. 吉林大学学报(工学版), 1-11. https://doi.org/10.13229/j.cnki.jdxbgxb.20231132.

    Li Lijia, Li Hongrui, Xie Pengshu, et al. The influence of residual stress on the cyclic indentation behavior of materials[J/OL]. Journal of Jilin University (Engineering and Technology Edition), 1-11. https://doi.org/10.13229/j.cnki.jdxbgxb.20231132.
    [20]
    Zhu L, Xu B S, Wang H D, et al. Determination of hardness of plasma-sprayed FeCrBSi coating on steel substrate by nanoindentation[J]. Materials Science & Engineering A, 2010, 528(1): 425 − 428. doi: 10.1016/j.msea.2010.09.028
    [21]
    Du B R, Zhang N, Hou X D, et al. (Ti, Nb)(C, B)/IN625 in-situ reactive coating prepared by ultra-high-speed laser cladding: interfacial characterization, residual stress and surface wear mechanisms[J]. Coatings, 2023, 13(12): 2099. doi: 10.3390/coatings13122099
    [22]
    Lin D Y, Xu L Y, Jing H Y, et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting[J]. Additive Manufacturing, 2020, 32: 101058. doi: 10.1016/j.addma.2020.101058
    [23]
    Lee J, Terner M, Copin E, et al. A novel approach to the production of NiCrAlY bond coat onto In625 superalloy by selective laser melting[J]. Additive Manufacturing, 2020, 31: 100998. doi: 10.1016/j.addma.2019.100998
    [24]
    Lee Y H, Kwon D. Measurement of residual-stress effect by nanoindentatio on elastically strained (100) W[J]. Scripta Materialia, 2003, 49(5): 459 − 465. doi: 10.1016/S1359-6462(03)00290-2
    [25]
    郑红彬, 王淼辉, 乔培新, 等. 超高速激光熔覆成形M2涂层[J]. 中国表面工程, 2022, 35(3): 191 − 202. doi: 10.11933/j.issn.1007-9289.20210511001

    Zheng Hongbin, Wang Miaohui, Qiao Peixin, et al. M2 coatings formed by extreme high speed laser cladding[J]. China Surface Engineering, 2022, 35(3): 191 − 202. doi: 10.11933/j.issn.1007-9289.20210511001
    [26]
    Yuan W Y, Li R F, Chen Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J]. Surface & Coatings Technology, 2021, 405: 126582.
    [27]
    Li L Q, Shen F M, Zhou Y D, et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding[J]. Journal of Laser Applications, 2019, 31(4): 042009. doi: 10.2351/1.5094378
    [28]
    Zheng B J, Chen X M, Lian J S. Microstructure and wear property of laser cladding Al + SiC powders on AZ91D magnesium alloy[J]. Optics and Lasers in Engineering, 2010, 48(5): 526 − 532. doi: 10.1016/j.optlaseng.2010.01.001
    [29]
    朱丽娜. 基于纳米压痕技术的涂层残余应力研究[D]. 北京: 中国地质大学(北京), 2013

    Zhu Lina. Research on residual stresses of coatings by nanoindentation technology[D]. Beijing: China University of Geosciences (Beijing), 2013
  • Related Articles

    [1]TIAN Qichao, ZHAO Yang, YANG Ming, MA Honghao, SHEN Zhaowu, REN Zhiqiang. Structural of the Al0.1CoCrFeNi high-entropy alloy/Cu explosive welding interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 36-42. DOI: 10.12073/j.hjxb.20210307001
    [2]CHEN Yixin, LI Xiaoquan, HAO Benxing, YUN Yeling, DU Yongqin. Analysis of microstructure and properties and nanoindentation of nickel-based alloy heterogeneous fusion welded 9Ni steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 90-96. DOI: 10.12073/j.hjxb.20200803001
    [3]HUANG Chaoqun1, LI Huan1, LUO Chuanguang1,2, SONG Yonglun3. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 54-58. DOI: 10.12073/j.hjxb.20150710004
    [4]WANG Lifeng, Dai Wenqin, ZHANG Pule, MENG Gongge. Mechanical behavior of IMC in BGA soldered joints by nanoindentation method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 11-14.
    [5]JI Feng, XUE Songbai, LIU Shuang, LOU Jiyuan, LOU Yinbin. Measurement of creep stress exponent of Zn-Al filler metal at room temperature by using nanoindentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 75-78.
    [6]QIN Fei, AN Tong, ZHONG Weixu, LIU Chengyan. Nanoindentation properties of intermetallic compounds in lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 25-28,32.
    [7]WANG Jianxin, LAI Zhongmin, SUN Dandan. Nanoindentation measurement of Sn-Cu-Ni joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 59-62.
    [8]LI Guo, GONG Jianming, CHEN Hu. Finite element analysis and nanoindentation-based experiment of residual stress of SS304/BNi-2/SS304 stainless steel brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 79-82,86.
    [9]ZHANG Guoshang, JING Hongyang, XU Lianyong, WEI Jun, . Thermomechanical characterization of 80Au/20Sn solder using nanoindentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 53-56.
    [10]ZHANG Guoshang, JING Hongyang, XU Lianyong, WEI Jun, HAN Yongdian. Investigation of creep stress exponent of 80Au/20Sn solder by nanoindentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 73-76.
  • Cited by

    Periodical cited type(1)

    1. 王兴磊,杨赫然,孙兴伟,赵泓荀,潘飞. 基于WOA-RBF的螺杆转子双砂带磨削表面粗糙度及材料去除率预测. 制造技术与机床. 2025(04): 172-179 .

    Other cited types(8)

Catalog

    Article views (83) PDF downloads (30) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return