Citation: | ZHAO Yanli, ZHANG Anrui, XIN Yong, YUAN Pan, ZHOU Yi, WANG Houqin, LI He. Effect of joint property differences on residual stresses in electron beam welded joints of Zr-Sn-Nb alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 105-112. DOI: 10.12073/j.hjxb.20231014001 |
In order to improve residual stress numerical simulation accuracy of Zr-Sn-Nb alloy electron beam, thermophysical parameters and mechanical properties of Zr-Sn-Nb alloys and welded joints were measured. and the influence of the difference in joint properties on the residual stress of electron beam welded joints was investigated. The hybrid heat source model of electron beam welding is established, and the thermoelastic-plastic finite element method is used to numerically simulate the stress of electron beam welded 4.45 mm thick Zr-Sn-Nb alloy. The simulation model was verify by weld morphology. The results show that the peak transverse residual stresses in the weld and heat-affected zone region on the upper surface of the test plate are higher than those simulated when the properties of the two are the same, with peaks of 319 MPa and 296 MPa, respectively. The peak longitudinal stress was 318 MPa when the differences in the properties of heat-affected zone and the base material and weld are considered, which has little effect on the residual stresses in the joint.
[1] |
贾豫婕, 林希衡, 邹小伟, 等. 锆合金的研发历史、现状及发展趋势[J]. 中国材料进展, 2022, 41(5): 354 − 370.
Jia Yujie, Lin Xiheng, Zou Xiaowei, et al. Research & development history, status and prospect of zirconium alloys[J]. Materials China, 2022, 41(5): 354 − 370.
|
[2] |
王旭峰, 李中奎, 周军, 等. 锆合金在核工业中的应用及研究进展[J]. 热加工工艺, 2012, 41(2): 71 − 74.
Wang Xufeng, Li Zhongkui, Zhou Jun, et al. Application and research progress of zirconium alloy in nuclear industry[J]. Hot Working Technology, 2012, 41(2): 71 − 74.
|
[3] |
Zhao Wanqian, Song Pengcheng, Peng Xiaoming, et al. Fracture mode analysis of Zr-Sn-Nb alloy under simulated LOCA condition in advanced nuclear reactors[J]. Engineering Failure Analysis, 2022, 137: 106392. doi: 10.1016/j.engfailanal.2022.106392
|
[4] |
邢硕, 蒲曾坪, 张坤, 等. 新型锆合金包壳蠕变性能评价方法研究[J]. 核动力工程, 2023, 44(4): 234 − 239.
Xing Shuo, Pu Zengping, Zhang Kun, et al. Study on evaluation method for creep performance of new zirconium alloy cladding[J]. Nuclear Power Engineering, 2023, 44(4): 234 − 239.
|
[5] |
钟建伟, 安军靖, 丁怀博, 等. Zr-Sn-Nb-Fe-Cr与Zr-Nb-Fe锆合金电阻点焊工艺及显微组织[J]. 焊接学报, 2021, 42(8): 82 − 90.
Zhong Jianwei, An Junjing, Ding Huaibo, et al. Welding processes and microstructures of weld bead of Zr-Sn-Nb-Fe-Cr and Zr-Nb-Fe zirconium alloy[J]. Transactions of the China Welding Institution, 2021, 42(8): 82 − 90.
|
[6] |
Slobodyan M S. Arc welding of zirconium and its alloys: a review[J]. Progress in Nuclear Energy, 2021, 133: 103630. doi: 10.1016/j.pnucene.2021.103630
|
[7] |
Slobodyan M S. Resistance, electron and laser-beam welding of zirconium alloys for nuclear applications: A review[J]. Nuclear Engineering and Technology, 2021, 53(4): 1049 − 1078. doi: 10.1016/j.net.2020.10.005
|
[8] |
王博, 包陈, 魏连峰, 等. 氢化物对锆合金薄板焊缝断裂行为的影响[J]. 机械工程学报, 2021, 57(20): 133 − 140. doi: 10.3901/JME.2021.20.133
Wang Bo, Bao Chen, Wei Lianfeng, et al. Effect of hydride on fracture behavior of zirconium alloy platy welds[J]. Journal of Mechanical Engineering, 2021, 57(20): 133 − 140. doi: 10.3901/JME.2021.20.133
|
[9] |
杨建国, 谢浩, 闫德俊, 等. 随焊干冰激冷冷源尺寸对焊接残余应力影响的有限元分析[J]. 焊接学报, 2017, 38(2): 14 − 18.
Yang Jianguo, Xie Hao, Yan Dejun, et al. FEM analysis about effect of cooling source size during welding with dry ice on welding residual stress[J]. Transactions of the China Welding Institution, 2017, 38(2): 14 − 18.
|
[10] |
杨帆, 陈芙蓉. A-UIT处理对7075铝合金焊接应力影响的数值模拟[J]. 焊接学报, 2021, 42(12): 91 − 96.
Yang Fan, Chen Furong. Numerical simulation of effect of A-UIT treatment on welding stress of 7075 aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(12): 91 − 96.
|
[11] |
许谦, 胡广旭, 董志波, 等. 基于相变与收缩耦合的1Cr12焊缝冷却动态力学行为[J]. 中国机械工程, 2021, 32(3): 341 − 347.
Xu Qian, Hu Guangxu, Dong Zhibo, et al. Dynamic mechanics behaviors of 1Cr12 weld cooling based on coupling of phase transformation and contraction[J]. China Mechanical Engineering, 2021, 32(3): 341 − 347.
|
[12] |
张开元. 固态相变对超高强钢焊接-热处理过程应力变形的影响[D]. 合肥: 中国科学技术大学, 2022.
Zhang Kaiyuan. Effect of solid-state phase transformation on stress deformation of ultra-high strength steel during weld-heat treatment [D]. Hefei: University of Science and Technology of China, 2022.
|
[13] |
Banik S D, Kumar S, Singh P K, et al. Distortion and residual stresses in thick plate weld joint of austenitic stainless steel: Experiments and analysis[J]. Journal of Materials Processing Technology, 2021, 289: 116944. doi: 10.1016/j.jmatprotec.2020.116944
|
[14] |
吴婧, 陈静, 蒋亦岚, 等. 冷变形N18合金再结晶过程中的织构演变[J]. 金属热处理, 2021, 46(5): 38 − 46.
Wu Jing, Chen Jing, Jiang Yilan, et al. Texture evolution of cold-rolled N18 alloy during recrystallization[J]. Heat Treatment of Metals, 2021, 46(5): 38 − 46.
|
[15] |
张建军, 李中奎, 周军, 等. 新锆合金高温变形行为[C]//中国有色金属学会合金加工学术委员会. 中国有色金属学会第十二届材料科学与合金加工学术年会论文集. 北京: 中国有色金属学会, 2007: 374 − 378.
Zhang Jianjun, Li Zhongkui, JiangYilan, et al. High temperature deformation behavior of new zirconium alloy [C]// Alloy Processing Academic Committee of China Nonferrous Metals Society. Proceedings of the 12th Annual Conference of Materials Science and Alloy Processing of the Chinese Non-Ferrous Metals Society. Beijing: Nonferrous Metals in China, 2007: 347 − 378.
|
[1] | LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001 |
[2] | WANG Shun, HAN Hongbiao, LI Shikang, LI Mengnan. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 37-43. DOI: 10.12073/j.hjxb.20210131002 |
[3] | WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001 |
[4] | HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129 |
[5] | REN Weibin1,2, DONG Shiyun2, XU Binshi2, ZHOU Jinyu1, WANG Yujiang2. Design and implementation of laser refabrication forming closed-loop controlling for compressor blade[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059 |
[6] | HAN hongbiao, LI Xiangyang. Digital control of capacitance charge-discharge pulse in electro-spark deposition power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 23-26,70. |
[7] | LIU Lijun, DAI Hongbin, GAO Hongming, WU Lin. Threshold calibrating of 6D touching force in welding seam identifying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 65-68. |
[8] | FANG Chen-fu, YIN Shu-yan, HOU Run-shi, YU Ming, WANG Jin-cheng. Double close loops control system of peak current mode of inverter arc welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 14-18. |
[9] | LI Xiao-gang, Lü Bi-feng, YAO Wei-wei, XUE Ji-ren. Study on contacting line of two intersecting pipes in welding assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 39-42. |
[10] | Doctor Candidate Cheng Qiang, Pan Jiluan, Liu Wenhuan, Wan Kezheng. A CLOSED LOOP CONTROL SYSTEM FOR ONE SIDE MIG WELDING WITH BACK BEAD FORMATION[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (2): 110-118. |
1. |
李晓迪,程战,邹斌华,王蒙. 电火花沉积技术研究现状及发展趋势. 电加工与模具. 2024(S1): 18-25 .
![]() |