Advanced Search
ZHAO Yanli, ZHANG Anrui, XIN Yong, YUAN Pan, ZHOU Yi, WANG Houqin, LI He. Effect of joint property differences on residual stresses in electron beam welded joints of Zr-Sn-Nb alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 105-112. DOI: 10.12073/j.hjxb.20231014001
Citation: ZHAO Yanli, ZHANG Anrui, XIN Yong, YUAN Pan, ZHOU Yi, WANG Houqin, LI He. Effect of joint property differences on residual stresses in electron beam welded joints of Zr-Sn-Nb alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 105-112. DOI: 10.12073/j.hjxb.20231014001

Effect of joint property differences on residual stresses in electron beam welded joints of Zr-Sn-Nb alloys

More Information
  • Received Date: October 13, 2023
  • Available Online: May 16, 2024
  • In order to improve residual stress numerical simulation accuracy of Zr-Sn-Nb alloy electron beam, thermophysical parameters and mechanical properties of Zr-Sn-Nb alloys and welded joints were measured. and the influence of the difference in joint properties on the residual stress of electron beam welded joints was investigated. The hybrid heat source model of electron beam welding is established, and the thermoelastic-plastic finite element method is used to numerically simulate the stress of electron beam welded 4.45 mm thick Zr-Sn-Nb alloy. The simulation model was verify by weld morphology. The results show that the peak transverse residual stresses in the weld and heat-affected zone region on the upper surface of the test plate are higher than those simulated when the properties of the two are the same, with peaks of 319 MPa and 296 MPa, respectively. The peak longitudinal stress was 318 MPa when the differences in the properties of heat-affected zone and the base material and weld are considered, which has little effect on the residual stresses in the joint.

  • [1]
    贾豫婕, 林希衡, 邹小伟, 等. 锆合金的研发历史、现状及发展趋势[J]. 中国材料进展, 2022, 41(5): 354 − 370.

    Jia Yujie, Lin Xiheng, Zou Xiaowei, et al. Research & development history, status and prospect of zirconium alloys[J]. Materials China, 2022, 41(5): 354 − 370.
    [2]
    王旭峰, 李中奎, 周军, 等. 锆合金在核工业中的应用及研究进展[J]. 热加工工艺, 2012, 41(2): 71 − 74.

    Wang Xufeng, Li Zhongkui, Zhou Jun, et al. Application and research progress of zirconium alloy in nuclear industry[J]. Hot Working Technology, 2012, 41(2): 71 − 74.
    [3]
    Zhao Wanqian, Song Pengcheng, Peng Xiaoming, et al. Fracture mode analysis of Zr-Sn-Nb alloy under simulated LOCA condition in advanced nuclear reactors[J]. Engineering Failure Analysis, 2022, 137: 106392. doi: 10.1016/j.engfailanal.2022.106392
    [4]
    邢硕, 蒲曾坪, 张坤, 等. 新型锆合金包壳蠕变性能评价方法研究[J]. 核动力工程, 2023, 44(4): 234 − 239.

    Xing Shuo, Pu Zengping, Zhang Kun, et al. Study on evaluation method for creep performance of new zirconium alloy cladding[J]. Nuclear Power Engineering, 2023, 44(4): 234 − 239.
    [5]
    钟建伟, 安军靖, 丁怀博, 等. Zr-Sn-Nb-Fe-Cr与Zr-Nb-Fe锆合金电阻点焊工艺及显微组织[J]. 焊接学报, 2021, 42(8): 82 − 90.

    Zhong Jianwei, An Junjing, Ding Huaibo, et al. Welding processes and microstructures of weld bead of Zr-Sn-Nb-Fe-Cr and Zr-Nb-Fe zirconium alloy[J]. Transactions of the China Welding Institution, 2021, 42(8): 82 − 90.
    [6]
    Slobodyan M S. Arc welding of zirconium and its alloys: a review[J]. Progress in Nuclear Energy, 2021, 133: 103630. doi: 10.1016/j.pnucene.2021.103630
    [7]
    Slobodyan M S. Resistance, electron and laser-beam welding of zirconium alloys for nuclear applications: A review[J]. Nuclear Engineering and Technology, 2021, 53(4): 1049 − 1078. doi: 10.1016/j.net.2020.10.005
    [8]
    王博, 包陈, 魏连峰, 等. 氢化物对锆合金薄板焊缝断裂行为的影响[J]. 机械工程学报, 2021, 57(20): 133 − 140. doi: 10.3901/JME.2021.20.133

    Wang Bo, Bao Chen, Wei Lianfeng, et al. Effect of hydride on fracture behavior of zirconium alloy platy welds[J]. Journal of Mechanical Engineering, 2021, 57(20): 133 − 140. doi: 10.3901/JME.2021.20.133
    [9]
    杨建国, 谢浩, 闫德俊, 等. 随焊干冰激冷冷源尺寸对焊接残余应力影响的有限元分析[J]. 焊接学报, 2017, 38(2): 14 − 18.

    Yang Jianguo, Xie Hao, Yan Dejun, et al. FEM analysis about effect of cooling source size during welding with dry ice on welding residual stress[J]. Transactions of the China Welding Institution, 2017, 38(2): 14 − 18.
    [10]
    杨帆, 陈芙蓉. A-UIT处理对7075铝合金焊接应力影响的数值模拟[J]. 焊接学报, 2021, 42(12): 91 − 96.

    Yang Fan, Chen Furong. Numerical simulation of effect of A-UIT treatment on welding stress of 7075 aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(12): 91 − 96.
    [11]
    许谦, 胡广旭, 董志波, 等. 基于相变与收缩耦合的1Cr12焊缝冷却动态力学行为[J]. 中国机械工程, 2021, 32(3): 341 − 347.

    Xu Qian, Hu Guangxu, Dong Zhibo, et al. Dynamic mechanics behaviors of 1Cr12 weld cooling based on coupling of phase transformation and contraction[J]. China Mechanical Engineering, 2021, 32(3): 341 − 347.
    [12]
    张开元. 固态相变对超高强钢焊接-热处理过程应力变形的影响[D]. 合肥: 中国科学技术大学, 2022.

    Zhang Kaiyuan. Effect of solid-state phase transformation on stress deformation of ultra-high strength steel during weld-heat treatment [D]. Hefei: University of Science and Technology of China, 2022.
    [13]
    Banik S D, Kumar S, Singh P K, et al. Distortion and residual stresses in thick plate weld joint of austenitic stainless steel: Experiments and analysis[J]. Journal of Materials Processing Technology, 2021, 289: 116944. doi: 10.1016/j.jmatprotec.2020.116944
    [14]
    吴婧, 陈静, 蒋亦岚, 等. 冷变形N18合金再结晶过程中的织构演变[J]. 金属热处理, 2021, 46(5): 38 − 46.

    Wu Jing, Chen Jing, Jiang Yilan, et al. Texture evolution of cold-rolled N18 alloy during recrystallization[J]. Heat Treatment of Metals, 2021, 46(5): 38 − 46.
    [15]
    张建军, 李中奎, 周军, 等. 新锆合金高温变形行为[C]//中国有色金属学会合金加工学术委员会. 中国有色金属学会第十二届材料科学与合金加工学术年会论文集. 北京: 中国有色金属学会, 2007: 374 − 378.

    Zhang Jianjun, Li Zhongkui, JiangYilan, et al. High temperature deformation behavior of new zirconium alloy [C]// Alloy Processing Academic Committee of China Nonferrous Metals Society. Proceedings of the 12th Annual Conference of Materials Science and Alloy Processing of the Chinese Non-Ferrous Metals Society. Beijing: Nonferrous Metals in China, 2007: 347 − 378.
  • Related Articles

    [1]FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001
    [2]AN Tong, QIN Fei, WANG Xiaoliang. Effect of strain rate on mechanical behavior of lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 59-62.
    [3]ZHOU Liucheng, ZHOU Lei, LI Yinghong, WANG Cheng. Effect of laser shock processing on tensile strength of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 52-54,58.
    [4]JIANG Qinglei, LI Yajiang, WANG Juan, XU Zonglin, FU Jinliang. Strength matching on mechanical properties of welded joint of Q550 high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 65-68.
    [5]GANG Tie, ZHAO Xuemei, LIN Sanbao, LUAN Yilin. Non-destructive evaluation of FSW tensile property[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 1-4.
    [6]XUE Song-bai, WU Yu-xiu, CUI Guo-ping, ZHANG Ling. Numerical simulation of effect of thermal cycling on tensile strength and microstructure of QFP soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 1-4.
    [7]YAO Li-hua, XUE Song-bai, WANG Peng, LIU Lin. Effect of diode-laser parameters on tensile strength of QFP micro-joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 90-92.
    [8]HU Yong-fang, XUE Song-bai, YU Sheng-lin. Study on strength of soldered micro-joints of QFP devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 78-80.
    [9]HU Yong-fang, XUE Song-bai, SHI Yi-ping, YU Sheng-lin. Effects of lead-free solder on the tensile strength of QFP micro-joints soldered with different pitchs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 72-74.
    [10]ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.
  • Cited by

    Periodical cited type(8)

    1. 孙康,肖笑,石红信,符成学,内田成明. 钛合金电弧增材制造温度与残余应力数值模拟. 材料热处理学报. 2025(04): 202-210 .
    2. 李敬勇,李超然,徐育烺,钱鹏. 层间温度对CMT电弧增材制造2Cr13不锈钢薄壁件成形及组织和性能影响. 焊接. 2024(02): 43-50 .
    3. 张云舒,吴斌涛,赵昀,丁东红,潘增喜,李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望. 机械工程学报. 2024(08): 65-80 .
    4. 张云舒,郑登勇,邵丹丹,徐晖,徐仁,吴斌涛. 层间强制冷却对电弧熔丝增材制造钛合金温度场和流场的影响. 西北工程技术学报. 2024(03): 199-205+213 .
    5. 王磊磊,吕飞阅,高转妮,虞文军,高川云,占小红. 电弧增材制造2319铝合金交叉桁条结构微观组织与拉伸性能研究. 机械工程学报. 2023(01): 267-277 .
    6. 贾金龙,张佳,杜明科,蒋成燕,冯毅. SUS304奥氏体不锈钢TIG焊电弧增材制造工艺优化. 机械制造文摘(焊接分册). 2023(01): 1-6 .
    7. 邸艳艳,胡仁志,熊逸博,郑志镇,李建军. 电弧熔丝增材制造316L的温度场仿真及对基体的影响. 电焊机. 2022(01): 63-67 .
    8. 刘理想,柏兴旺,周祥曼,张海鸥. 电弧增材制造多层单道堆积的焊道轮廓模型函数. 焊接学报. 2020(06): 24-29+36+98 . 本站查看

    Other cited types(12)

Catalog

    Article views (89) PDF downloads (15) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return