Advanced Search
XU Yuanzhao, LUO Jiutian, FANG Naiwen, FENG Zhiqiang, WU Pengbo, LI Quan. Image processing technology for ship plate melt pool based on MS-FCM algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 82-90. DOI: 10.12073/j.hjxb.20231010001
Citation: XU Yuanzhao, LUO Jiutian, FANG Naiwen, FENG Zhiqiang, WU Pengbo, LI Quan. Image processing technology for ship plate melt pool based on MS-FCM algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 82-90. DOI: 10.12073/j.hjxb.20231010001

Image processing technology for ship plate melt pool based on MS-FCM algorithm

More Information
  • Received Date: October 09, 2023
  • Available Online: March 07, 2024
  • The image processing and feature extraction technology of molten pool is an important part of intelligent welding quality monitoring for gas metal arc welding (GMAW) on ships. To address the unstable characteristics of large smoke and spatter during GMAW welding of ship hull plates, such as blurred image acquisition and difficult edge extraction, a fuzzy c-means clustering (FCM) based on mean shift (MS) optimization is proposed The image processing algorithm for In the optimization design of the welding dynamic visual sensing system, on the basis of maximizing the clarity of image information acquisition, the MS algorithm is used to obtain superpixel images to solve the sensitivity of the FCM algorithm to noise. At the same time, a weighted neighborhood window is introduced on the FCM algorithm to enhance the robustness of the MS-FCM algorithm, overcome the effects of smoke, spatter, arc light, noise, etc., and complete image segmentation and edge extraction Finally, four different image processing methods were designed for FCM, fuzzy c-means with spatial constraints (FCM-S), enhanced fuzzy c-means (ENFCM), and fuzzy local information c-means clustering (FLICM) algorithms. The edge segmentation effects were compared with the MS-FCM optimization model to obtain the extracted fusion widths from these methods, Verify the accuracy of extracting geometric features of the molten pool The results show that the MS-FCM algorithm can effectively suppress noise interference, smooth information, and achieve high extraction accuracy in ship welding pool image processing.

  • [1]
    方乃文, 郭二军, 徐锴, 等. 钛合金激光填丝焊缝晶粒生长及相变原位观察[J]. 中国有色金属学报, 2022, 32(6): 1655 − 1672.

    Fang Naiwen, Guo Erjun, Xu Kai, et al. In-situ observation of grain growth and phase transformation in laser welding of titanium alloy with filler wire[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(6): 1655 − 1672.
    [2]
    蒋宝, 徐冬至, 黄瑞生, 等. 基于视觉传感的焊接机器人焊缝识别跟踪技术研究现状[J]. 金属加工 (热加工), 2022(1): 10-17.

    Jiang Bao, Xu Dongzhi, Huang Ruisheng, et al. Research status of welding robot seam recognition and tracking technology based on visual sensing [J] MW Metal Forming, 2022(1): 10-17.
    [3]
    林少铎. 激光视觉传感的焊缝跟踪方法研究[D]. 广州: 广东工业大学, 2019.

    Lin Shaoduo. Research on seam tracking based on laser vision sensing[D]. Guangzhou: Guangdong University of Technology, 2019.
    [4]
    李翼, 吕建军, 周陶然, 等. 船舶智能制造关键共性技术体系探究[J]. 船舶工程, 2021, 43(6): 24 − 30.

    Li Yi, Lü Jianjun, Zhou Taoran, et al. Research on key common technology system of ship intelligent manufacturing[J]. Ship Engineering, 2021, 43(6): 24 − 30.
    [5]
    王树强, 周游, 陈昊雷, 等. 基于激光视觉的钢结构焊缝图像处理系统[J]. 焊接学报, 2022, 43(2): 101 − 105. doi: 10.12073/j.hjxb.20210603001

    Wang Shuqiang, Zhou You, Chen Haolei, et al. A steel structure weld image processing system based on laser vision[J]. Transaction of the China Welding Institution, 2022, 43(2): 101 − 105. doi: 10.12073/j.hjxb.20210603001
    [6]
    洪宇翔, 杨明轩, 都东, 等. 铝合金爬坡 TIG 焊熔池失稳状态的视觉检测[J]. 焊接学报, 2021, 42(10): 8 − 13.

    Hong Yuxiang, Yang Mingxuan, Du Dong, et al. Unstable state vision detection of molten pool during aluminum alloy climbing-TIG welding[J]. Transaction of the China Welding Institution, 2021, 42(10): 8 − 13.
    [7]
    Nomura K, Fukushima K, Matsumura T, et al. Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation[J]. Journal of Manufacturing Processes, 2021, 61: 590 − 600. doi: 10.1016/j.jmapro.2020.10.019
    [8]
    杨嘉佳, 王克鸿, 吴统立, 等. 铝合金双丝脉冲 MIG 焊双向熔池同步视觉传感及图像处理[J]. 机械工程学报, 2014, 50(12): 44 − 50. doi: 10.3901/JME.2014.12.044

    Yang Jiajia, Wang Kehong, Wu Tongli, et al. Two-directional synchronous visual sensing and image processing of weld pool in aluminum alloy twin arc pulsed MIG welding[J]. Journal of Mechanical Engineering, 2014, 50(12): 44 − 50. doi: 10.3901/JME.2014.12.044
    [9]
    王煜, 高向东, 陈子琴, 等. 激光-MAG 复合焊接过程金属蒸气和背部熔池图像分析[J]. 机械工程学报, 2020, 55(19): 167 − 173.

    Wang Yu, Gao Xiangdong, Chen Ziqin, et al. Analysis of the images of metal vapor and bottom-molten pool in laser-MAG hybrid welding process[J]. Journal of Mechanical Engineering, 2020, 55(19): 167 − 173.
    [10]
    杨家林, 高进强, 秦国梁, 等. 基于视觉的激光深熔焊熔池检测及图像处理[J]. 焊接学报, 2011, 32(11): 21 − 24.

    Yang Jialin, Gao Jinqiang, Qin Guoliang, et al. Vision-based checking and image processing for melt pool of laser deep penetration welding[J]. Transaction of the China Welding Institution, 2011, 32(11): 21 − 24.
    [11]
    崔勇, 马国红, 马少龙. 双弧焊熔池图像处理[J]. 热加工工艺, 2013, 42(23): 160 − 162.

    Cui Yong, Ma Guohong, Ma Shaolong. Weld pool image processing in double arc welding[J]. Hot Working Technology, 2013, 42(23): 160 − 162.
    [12]
    薛家祥, 贾林, 李海宝. CO2 焊熔池图像的 Bubble 小波零交叉边缘检测[J]. 焊接学报, 2004, 25(1): 87-89.

    Xue Jiaxing, Jia Lin, Li Haibao. Edge detection of CO2 arc welding pool image based Bubble wavelet and zero crossing[J] Transaction of the China Welding Institution, 2004, 25(1): 87-89.
    [13]
    Chen C, Lü N, Chen S. Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests[J]. Journal of Manufacturing Processes, 2021, 63: 152 − 162. doi: 10.1016/j.jmapro.2020.04.005
    [14]
    刘坚, 向超前, 王方华, 等. 基于相位一致性的激光熔覆熔池边缘提取方法[J]. 机械工程学报, 2018, 54(5): 166-172.

    Liu Jian, Xiang Chaoqian, Wang Fanghua, et al. New method based on phase congruency for weld pool edge extraction in laser cladding[J] Journal of Manufacturing Processes, 2018, 54(5): 166-172.
    [15]
    Qiao N, Zou B. A segmentation method for noisy photoelectric image[J]. Optik, 2013, 124(20): 4092 − 4094.
    [16]
    Zhang Y, Bai X, Fan R, et al. Deviation-sparse fuzzy c-means with neighbor information constraint[J]. IEEE Transactions on Fuzzy Systems. A Pubilcation of the IEEE Neural Networks Council, 2018, 27(1): 185 − 199.
    [17]
    Fan J, Wang J. A two-phase fuzzy clustering algorithm based on neurodynamic optimization with its application for PolSAR image segmentation[J]. IEEE Transactions on Fuzzy Systems:A Pubilcation of the IEEE Neural Networks Council, 2016, 26(1): 72 − 83.
    [18]
    Shang R, Tian P, Jiao L, et al. A spatial fuzzy clustering algorithm with kernel metric based on immune clone for SAR image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1640 − 1652. doi: 10.1109/JSTARS.2016.2516014
    [19]
    Fang J, Wang K. Weld pool image segmentation of hump formation based on Fuzzy C-means and Chan-Vese model[J]. Journal of Materials Engineering and Performance, 2019, 28: 4467 − 4476. doi: 10.1007/s11665-019-04168-y
    [20]
    兰蓉, 林洋. 抑制式非局部空间直觉模糊 C-均值图像分割算法[J]. 电子与信息学报, 2019, 41(6): 1472 − 1479.

    Lan Rong, Lin Yang. Suppressed non-local spatial intuitionistic fuzzy c-means image segmentation algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1472 − 1479.
    [21]
    Gao Y, Wang Z, Xie J, et al. A new robust fuzzy c-means clustering method based on adaptive elastic distance[J]. Knowledge-Based Systems, 2022, 237: 107769. doi: 10.1016/j.knosys.2021.107769
  • Related Articles

    [1]HOU Yujie, HAN Hongbiao, YANG Xin, ZHENG Guangzhen. Development of a closed loop control system for discharge parameters of electric spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 53-59. DOI: 10.12073/j.hjxb.20221122003
    [2]LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001
    [3]WANG Shun, HAN Hongbiao, LI Shikang, LI Mengnan. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 37-43. DOI: 10.12073/j.hjxb.20210131002
    [4]WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001
    [5]HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129
    [6]CHU Weishen, LIN Tiesong, HE Peng, WEI Hongmei, DAI Dengfeng. Numerical simulation of stress field on WC-12Co coating by consecutive electro spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 71-74.
    [7]WEI Hongmei, CHU Weishen, LIN Tiesong, HE Peng. Numerical simulation of temperature field of WC-12Co coating by monopoles electro spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 35-38.
    [8]GAO Ying, HAN Jinghua, LOU Liyan, LI Huan. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 45-48.
    [9]GAO Yuxin, ZHAO Cheng, YI Jian. Analysis on WC-8Co electro-spark deposition coating with powder presetting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 49-52.
    [10]ZHANG Ping, MA Lin, LIANG Zhijie, ZHANG Erliang. Technique of nickel-based alloy coating produced by hand electric-spark depositing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 33-36.

Catalog

    Article views (150) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return