Citation: | XIAO Youfu, LIU Yongzhen, SUN Youhui, YAN Yusheng, XU Lianyong, HAN Yongdian. The influence of hydrogen pre-charging on the stress corrosion susceptibility of SCR welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 19-27. DOI: 10.12073/j.hjxb.20231008002 |
This study shows the influence of hydrogen pre-charging on the stress corrosion cracking (SCC) susceptibility of steel catenary riser (SCR) welded joints made of X65 through microstructural analysis, slow strain rate tensile test (SSRT) , and fracture surface analysis. The results reveal that the fine-grained heat-affected zone (FGHAZ) of the welded joints primarily comprises fine and uniform ferrite (F) and pearlite (P), significantly enhancing the mechanical property of this zone compared to other heat-affected zone . In contrast, the coarse-grained heat-affected zone (CGHAZ) is characterized by large block of proeutectoid ferrite (PF) and M-A constituent, resulting in poor SCC resistance in this area. Although the elastic stage of the stress-strain curve of SSRT sample under various hydrogen pre-charging time nearly coincide, hydrogen pre-charging decreases the tensile strength of the samples. Additionally, in a NaCl solution corrosion environment, the stress corrosion susceptibility coefficient EZ of the samples hydrogen uncharged and after four days of hydrogen pre-charging are 0.67% and 11.14%, respectively; in an H₂S corrosion environment, the stress corrosion susceptibility coefficient EZ values for the samples hydrogen uncharged and after four days of hydrogen pre-charging are 11.96% and 46.38%, respectively. This demonstrates that hydrogen pre-charging reduces the SCC resistance of welded joints in both corrosion environment. The samples undergo ductile fracture in the air environment, while quasi-cleavage fracture predominates in both corrosion environment. Hydrogen pre-charging reduces the material toughness and exacerbates microcracks and hole near the fracture surface, thereby reducing the material's resistance to SCC.
[1] |
刘雪, 钟史放, 徐连勇, 等. 不同应力幅下X65管线钢焊接接头的腐蚀疲劳行为[J]. 焊接学报, 2023, 44(7): 24 − 31,78. doi: 10.12073/j.hjxb.20220830001
Liu Xue, Zhong Shifang, Xu Lianyong, et al. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. Transactions of the China Welding Institution, 2023, 44(7): 24 − 31,78. doi: 10.12073/j.hjxb.20220830001
|
[2] |
Zhu N, Song H, Qian F, et al. Influence of exhaust pipe structure on urea-related deposits in diesel engine SCR system[J]. Processes, 2023, 11(4): 1199. doi: 10.3390/pr11041199
|
[3] |
Khan D, Hansen S G, Bjernemose J H, et al. Experimentation and numerical modeling of SCR spray droplets pre and post impingement on a mixer plate[J]. Fuel, 2023, 336: 126788. doi: 10.1016/j.fuel.2022.126788
|
[4] |
Han Y D, Zhong S F, Tian L, et al. Welding heat input for synergistic improvement in toughness and stress corrosion resistance of X65 pipeline steel with pre-strain[J]. Corrosion Science, 2022, 206: 110478. doi: 10.1016/j.corsci.2022.110478
|
[5] |
Yang X J, Sun F L, Li Q Z, et al. Effect of hydrogen charging on the stress corrosion cracking behavior of X70 steel in simulated deep seawater environment[J]. Metals, 2022, 12(2): 334 − 350. doi: 10.3390/met12020334
|
[6] |
Wang B Y, Ouyang L, Xu J X, et al. Study on stress corrosion cracking behavior of Incoloy825/X65 bimetallic composite pipe welded joint in wet hydrogen sulfide environment[J]. Metals, 2022, 12(4): 632-644.
|
[7] |
李泽宇, 徐连勇, 郝康达, 等. MAG和激光扫描-电弧复合焊X80钢接头组织和性能[J]. 焊接学报, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002
Li Zeyu, Xu Lianyong, Hao Kangda, et al. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. Transactions of the China Welding Institution, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002
|
[8] |
Wu S J, Feng J, Cheng F J, et al. Research on root appearance and fatigue life of steel catenary riser (SCR) using GMAW/GTAW-P double-sided root welding process[J]. International Journal of Pressure Vessels and Piping, 2023, 201: 104866. doi: 10.1016/j.ijpvp.2022.104866
|
[9] |
Zhang L, Zhao T F. Frequency domain fatigue evaluation on SCR girth-weld based on structural stress[J]. China Ocean Engineering, 2024, 38(2): 255 − 270. doi: 10.1007/s13344-024-0022-1
|
[10] |
Adhikari S, Dhongde N R, Talukdar M K, et al. Investigation of carbon steels (API 5L X52 and API 5L X60) dissolution CO2-H2S solutions in the presence of acetic acid: mechanistic reaction pathway and kinetics[J]. Arabian Journal for Science and Engineering, 2024, 49(6): 8363 − 8381. doi: 10.1007/s13369-024-08812-1
|
[11] |
Pazhanivel B, Sathiya P, Muthuraman K, et al. Influence of NaCl environment on stress corrosion cracking of additive manufactured Ti-6Al-4V alloy[J]. Engineering Failure Analysis, 2021, 127: 105515. doi: 10.1016/j.engfailanal.2021.105515
|
[12] |
Qi F Z, Zhang X L, Wu G H, et al. Effect of heat treatment on the stress corrosion cracking behavior of cast Mg-3Nd-3Gd-0.2Zn-0.5Zr alloy in a 3.5 wt% NaCl salt spray environment[J]. Materials Characterization, 2022, 183: 111630. doi: 10.1016/j.matchar.2021.111630
|
[13] |
董晓明. 高强度抗腐蚀油管和套管用钢的抗H2S应力腐蚀行为研究[D]. 上海: 上海大学, 2019.
Dong Xiaoming. Research on sulfide stress corrosion behavior of high strength SSCC resistant tubing and casing steel[D]. Shanghai: Shanghai University, 2019.
|
[14] |
赵伟. X80管线钢与其焊接接头耐蚀性研究[D]. 济南: 山东大学, 2016.
Zhao Wei. Study on corrosion resistance of X80 pipeline steel and its welded joint[D]. Jinan: Shandong University, 2016.
|
[15] |
Liu P, Zhang Q H, Watanabe Y, et al. A critical review of the recent advances in inclusion-triggered localized corrosion in steel[J]. NPJ Materials Degradation, 2022, 6(1): 81 − 97. doi: 10.1038/s41529-022-00294-6
|
[16] |
Zhang Y, Dong L J, Li H, et al. Insights into the role of partially mixed zones in sulfide stress corrosion cracking of the Inconel 625/X80 weld overlay[J]. International Journal of Hydrogen Energy, 2023, 48(73): 28583 − 28600. doi: 10.1016/j.ijhydene.2023.04.061
|
[17] |
Hu J T, Liu Y, Wang G, et al. Effects of microstructure on the low-temperature toughness of an X80 × D1422mm heavy-wall heat-induced seamless bend[J]. Metals, 2021, 11(7): 1055 − 1072. doi: 10.3390/met11071055
|
[18] |
郭晓静, 苏崇涛. 管线钢冲击断口的显微分析[J]. 理化检验-物理分册, 2021, 57(12): 44 − 48. doi: 10.11973/lhjy-wl202112009
Guo Xiaojing, Su Chongtao. Fractographic analysis of impact fracture surface for pipeline steels[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2021, 57(12): 44 − 48. doi: 10.11973/lhjy-wl202112009
|
[19] |
Luo X, Chen X H, Wang Z D. High toughness independent of low-medium heat inputs in coarse-grain heat-affected zone of a designed HSLA steel[J]. Steel Research International, 2017, 88(11): 1700019. doi: 10.1002/srin.201700019
|
[1] | LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001 |
[2] | ZHANG Zhongming, XUE Long, LI Qilong, HUANG Jiqiang, XU Chunjie. Corrosion behavior of X65 pipeline steel welded joints by hyperbaric GMAW in simulated seawater[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 45-50. DOI: 10.12073/j.hjxb.20200824001 |
[3] | WANG Zhen, CHENG Fangjie, ZHANG Yanshen, SHAO Zhujing, WANG Dongpo. Effect of misalignment on fatigue performance of horizontal welded joints in steel catenary riser system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 123-127. DOI: 10.12073/j.hjxb.2019400084 |
[4] | ZHANG Jingqiang, FANG Hongyuan, WANG Jiajie, YANG Jianguo. Escape characteristic of diffusion hydrogen tracer in TIG welded 30CrMnSiNi2 steel with electrochemical hydrogen charging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 105-108. |
[5] | ZHANG Jingqiang, YANG Jianguo, XUE Gang, WANG Jiajie, FANG Hongyuan. Hydrogen induced cracking sensibility of welded joint based on tensile test with hydrogen pre-charging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 89-92. |
[6] | XIE Fei, WANG Dan, WU Ming, SUN Dongxu. Effects of strain rate on stress corrosion cracking of X80 pipeline steel in ku'erle soil environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 55-58. |
[7] | TANG Jianqun, GONG Jianming. Analysis on properties of corrosion and hydrogen-permeation for weldment of SPV50Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 57-60. |
[8] | WANG Bingying, HUO Lixing, ZHANG Yufeng, WANG Dongpo. CO32--HCO3- stress corrosion test of welded joint for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 85-88. |
[9] | LIU Jinming, ZHANG Yu-feng, WANG Dong-po, HUO Li-xing. Fatigue properties of X65 pipie-line steel butt joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 56-59. |
[10] | DENG Cai yan, ZHANG Yu feng, HUO Li xing, BAI Bing ren, LI Xiao wei, CAO Jun. CTOD fracture toughness of welded joints of X65 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 13-16. |
1. |
秦彬皓,于鹏海,孙国立,弗拉基斯拉夫·哈斯金,张宇鹏. 交变磁场对TC4合金TIG焊接接头组织与性能的影响. 机电工程技术. 2025(04): 29-33+105 .
![]() | |
2. |
任香会,梁文奇,王瑞超,韩善果,武威. 焊接模式对电弧增材制造316不锈钢组织及力学性能的影响. 焊接学报. 2024(04): 79-85+92+133-134 .
![]() | |
3. |
刘鸿铭,朱宗涛,刘云祺,刘瑞琳. 12 mm厚TC4钛合金激光-MIG复合焊接头组织与性能研究. 精密成形工程. 2024(05): 21-29 .
![]() | |
4. |
赵代娣,刘沁源. 20 mm厚Ti-6Al-4V钛合金窄间隙激光填丝焊接头组织性能研究. 精密成形工程. 2024(12): 180-188 .
![]() | |
5. |
耿占一,胡连海,霍佳磊,卢立祥,王松涛,陈永福. 激光复合焊技术研究及应用进展. 金属加工(热加工). 2023(04): 1-9 .
![]() | |
6. |
张骞,张成竹,林波,冉洸奇,胡世天,朱宗涛. 重熔摆动激光焊修复TC4钛合金焊接接头组织和性能. 焊接. 2023(01): 55-59 .
![]() | |
7. |
冯栋,周卫涛,颉文峰. 焊接工艺对薄壁环形钛合金焊缝成形及承载能力的影响. 焊接. 2023(04): 55-59 .
![]() | |
8. |
胥国祥,张新建,刘海军,胡庆贤,朱杰. 船舶激光-电弧复合热源焊接关键物理机制研究. 金属加工(热加工). 2023(06): 1-7+17 .
![]() | |
9. |
曾俊谚,庄园,杨涛,钟玉婷,杨响明. 基于飞秒激光的钛合金表面微纳米结构制备及腐蚀行为. 焊接. 2023(08): 37-43 .
![]() | |
10. |
周亚举,尹圣铭,夏永中,易果强,薛丽红,严有为. 热处理对电弧熔丝增材制造核电用铁素体/马氏体钢微观组织与力学性能的影响. 焊接学报. 2023(10): 18-26+133-134 .
![]() | |
11. |
郝子龙,张粉萍,刘子聪,周围,袁剑平,李松伟,李楠贵,李正勇,邓细望. 基于TC4钛合金的TIG、MIG焊接工艺与性能对比研究. 新技术新工艺. 2023(12): 58-61 .
![]() | |
12. |
席敏敏,李中祥,黄胜,田磊,王强强,姜帆,赵西岐. SUS304/Q235B双金属冶金复合螺旋管激光-CMT复合焊+埋弧焊接头组织及性能. 焊接. 2022(12): 6-12 .
![]() |