Citation: | WANG Wenqin, XU Yongdong, HAN Zhaoxian, ZHANG Chaohua, JIA Jianping, WANG Feifan, LI Yulong. Numerical simulation of the temperature field in resistance seam welding for fabricating Fe-based amorphous coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 24-32. DOI: 10.12073/j.hjxb.20230910001 |
A Fe-based amorphous coating was successfully fabricated on SUS304 using resistance seam welding (RSW), and the thermal cycling history during the welding process was measured. Based on the Comsol, the electric-thermal coupling finite element method (FEM) was adopted to analyze the dynamic distribution of current density and temperature field during the fabricating process, as well as the heat exchange mechanism. By comparing the experimental and simulated results of the temperature field, it can be concluded that the error in the temperature thermal cycle curve between the simulation and experiment at the same position is very small, which verifies the reliability of the electric-thermal coupling FEM in calculating the temperature field of the Fe-based amorphous coating fabricated by RSW. The simulation results indicate that the high current density area mainly exists at certain points at the bottom of the powder layer directly under the electrode wheel, and the adjacent areas centered on the left and right ends of the contact surface between the electrode wheel and the powder layer. The temperature field during the fabricating process of Fe-based amorphous coatings is not only related to the distribution of current density but also influenced by the movement of the electrode wheel and the heat exchange between the coating and the surrounding region. When the fabrication process is stable, the peak temperature remains almost unchanged in the longitudinal direction. In the x-z cross-section, there is a ‘concave’ distribution with higher temperature on the left side, lower temperature in the middle, and intermediate temperature on the right side. The corresponding thermal cycle curve shows an overall increasing trend of ‘rise-fall-rise’.
[1] |
Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states[J]. Nature Materials, 2021, 20(10): 1347 − 1352. doi: 10.1038/s41563-021-01011-5
|
[2] |
Ge Jiacheng, Luo Peng, Wu Zhenduo, et al. Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons[J]. Materials Research Letters, 2023, 11(7): 547 − 555. doi: 10.1080/21663831.2023.2187264
|
[3] |
Di S Y, Wang Q Q, Yang Y Y, et al. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment[J]. Journal of Materials Science & Technology, 2022, 97: 20 − 28.
|
[4] |
Li X S, Xue Z Y, Hou X B, et al. FeCo-based amorphous alloys with high ferromagnetic elements and large annealing processing window[J]. Intermetallics, 2021, 131: 107087. doi: 10.1016/j.intermet.2021.107087
|
[5] |
Theisen E A. Recent advances and remaining challenges in manufacturing of amorphous and nanocrystalline alloys[J]. IEEE Transactions on Magnetics, 2022, 58(8): 2001207.
|
[6] |
Qi Xiaojing, You Junhua, Zhou Jifeng, et al. A review of Fe-based amorphous and nanocrystalline alloys: preparations, applications, and effects of alloying elements[J]. Physica Status Solidi A, 2023, 220(14): 2300079 (1 − 13). doi: 10.1002/pssa.202300079
|
[7] |
Meghwal A, Pinches S, King H J, et al. Fe-based amorphous coating for high-temperature wear, marine and low pH environments[J]. Materialia, 2022, 25: 101549. doi: 10.1016/j.mtla.2022.101549
|
[8] |
Lassoued A, Li J F. Preparation, characterization and application of Fe72Cu1Co5Si9B13 metallic glass catalyst in degradation of azo dyes[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(16): 21727 − 21741. doi: 10.1007/s10854-021-06693-w
|
[9] |
Liang S, Wang X Q, Zhang W C, et al. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability[J]. Applied Materials Today, 2020, 19: 100543. doi: 10.1016/j.apmt.2019.100543
|
[10] |
Wei B B, Li X L, Sun H G, et al. Comparative study on the corrosion and self-cleaning behavior of Fe-B-C and Fe-B-P amorphous alloys in methylene blue dye solution degradation[J]. Journal of Non-Crystalline Solids, 2022, 575: 121212. doi: 10.1016/j.jnoncrysol.2021.121212
|
[11] |
Wang W Q, Cai Z Z, Li S, et al. Microstructure and wear resistance of in-situ synthesized stellate Mo2C reinforced WC/amorphous composite coatings by resistance seam welding (RSW)[J]. Tribology International, 2023, 186: 108599. doi: 10.1016/j.triboint.2023.108599
|
[12] |
Yan Y Q, Liang X, Ma J, et al. Rapid removal of copper from wastewater by Fe-based amorphous alloy[J]. Intermetallics, 2020, 124: 106849. doi: 10.1016/j.intermet.2020.106849
|
[13] |
Liu C Y, Zhang Y X, Zhang C Y, et al. Thermal, magnetic and mechanical behavior of large-sized Fe-based amorphous alloy ribbons by twin-roll strip casting[J]. Intermetallics, 2021, 132: 107144. doi: 10.1016/j.intermet.2021.107144
|
[14] |
Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications[J]. Progress in Materials Science, 2019, 103: 235 − 318. doi: 10.1016/j.pmatsci.2019.01.003
|
[15] |
高鹏飞, 陈永君, 王增睿, 等. 铁基非晶涂层的研究进展与应用[J]. 表面技术, 2023, 52(3): 64 − 74.
Gao Pengfei, Chen Yongjun, Wang Zengrui, et al. Research progress and application of Fe-based amorphous coatings[J]. Surface Technology, 2023, 52(3): 64 − 74.
|
[16] |
Hong X, Tan Y F, Zhou C H, et al. Microstructure and tribological properties of Zr-based amorphous-nanocrystal-line coatings deposited on the surface of titanium alloys by electrospark deposition[J]. Applied Surface Science, 2015, 356: 1244 − 1251. doi: 10.1016/j.apsusc.2015.08.233
|
[17] |
Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying[J]. Surface and Coatings Technology, 2009, 204(5): 563 − 570. doi: 10.1016/j.surfcoat.2009.08.025
|
[18] |
Katakam S, Kumar V, Santhanakrishnan S, et al. Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion[J]. Journal of Alloys and Compounds, 2014, 604: 266 − 272. doi: 10.1016/j.jallcom.2014.03.137
|
[19] |
Peng Chao, Zhong Fengping, Yuan Meng, et al. Corrosion behavior of HVOF Inconel 625 coating in the simulated marine environment[J]. China Welding, 2024, 33(1): 46 − 51.
|
[20] |
王永东, 宫书林, 汤明日, 等. 激光熔覆工艺对高熵合金组织与性能影响[J]. 焊接学报, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001
Wang Yongdong, Gong Shulin, Tang Mingri, et al. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. Transactions of the China Welding Institution, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001
|
[21] |
张而耕, 杨磊, 杨虎, 等. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399 − 407. doi: 10.11902/1005.4537.2022.138
Zhang Ergeng, Yang Lei, Yang Hu, et al. Review on research and optimization of corrosion resistance of thermal sprayed Fe-based amorphous coatings[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(2): 399 − 407. doi: 10.11902/1005.4537.2022.138
|
[22] |
Shrivastava A, Mukherjee S, Chakraborty S S. Addressing the challenges in remanufacturing by laser-based material deposition techniques[J]. Optics & Laser Technology, 2021, 144: 107404. doi: 10.1016/j.optlastec.2021.107404
|
[23] |
Guo R Q, Zhang C, Chen Q, et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF[J]. Corrosion Science, 2011, 53(7): 2351 − 2356. doi: 10.1016/j.corsci.2010.12.022
|
[24] |
Liu G, An Y L, Guo Z H, et al. Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS[J]. Applied Surface Science, 2012, 258(14): 5380 − 5386. doi: 10.1016/j.apsusc.2012.02.015
|
[25] |
Farmer J, Choi J, Saw C, et al. Iron-based amorphous metals: high-performance corrosion-resistant material development[J]. Metallurgical and Materials Transactions A, 2009, 40(6): 1289 − 1305. doi: 10.1007/s11661-008-9779-8
|
[26] |
胡立威, 李晋锋, 乐国敏, 等. 激光功率对Zr基复合涂层微观组织与性能的影响[J]. 材料热处理学报, 2018, 39(11): 101 − 106.
Hu Liwei, Li Jinfeng, Le Guomin, et al. Effect of laser power on microstructure and property of laser cladded Zr-Cu-Ni-Al coating[J]. Transactions of Materials and Heat Treatment, 2018, 39(11): 101 − 106.
|
[27] |
李永强, 赵贺, 赵熹华, 等. 铝合金LB-RSW焊接中RSW温度场的数值模拟[J]. 焊接学报, 2009, 30(4): 29 − 32. doi: 10.3321/j.issn:0253-360X.2009.04.008
Li Yongqiang, Zhao He, Zhao Xihua, et al. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW[J]. Transactions of the China Welding Institution, 2009, 30(4): 29 − 32. doi: 10.3321/j.issn:0253-360X.2009.04.008
|
[28] |
王文琴, 王昭漫, 李玉龙, 等. 电阻缝焊法制备铁基WC/金属双层涂层及其摩擦行为[J]. 金属学报, 2019, 55(4): 537 − 546. doi: 10.11900/0412.1961.2018.00271
Wang Wenqin, Wang Zhaoman, Li Yulong, et al. Wear behavior of Fe-WC/Metal double layer coatings fabricated by resistance seam weld method[J]. Acta Metallurgica Sinica, 2019, 55(4): 537 − 546. doi: 10.11900/0412.1961.2018.00271
|
[29] |
Pan C G, Zhang R, Wang D, et al. Preparation of high performance Fe-based amorphous coating by resistance seam welding[J]. Surface & Coatings Technology, 2021, 408: 126813.
|
[30] |
Kazakov Yu V, Potekhin V P. Mechanism of the formation of the weld core in the resistance seam welding of components with greatly differing thickness[J]. Welding International, 2012, 26(9): 723 − 727. doi: 10.1080/09507116.2011.653153
|
[31] |
Toyoda Shunsuke, Goto Sota. Metallurgical design and performance of ERW linepipe with high-quality weld seam suitable for extra-low-temperature services[J]. Proceedings of the Biennial International Pipeline Conference, 2012, 137 (3): 439 − 446.
|
[32] |
Okabe T, Yasuda K, Nakata K. Dynamic observations of welding phenomena and finite element analysis in high-frequency electric resistance welding[J]. Welding International, 2016, 30(11): 835 − 845. doi: 10.1080/09507116.2016.1142203
|
[33] |
李永强, 赵贺, 赵熹华, 等. 低碳钢激光束电阻缝焊复合焊接中电阻缝焊温度场的数值模拟[J]. 吉林大学学报(工学版), 2010, 40(3): 709 − 713.
Li Yongqiang, Zhao He, Zhao Xihua, et al. Numerical simulation of RSW temperature field during mild steel LB-RSW[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 709 − 713.
|
[1] | LIU Wenjing, HU Jianhua, ZHANG Yikun, XIE Zuopeng. Effect of field-shaper structure on magnetic pulse-assisted semi-solid brazing process of Cu/Al tubes joining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 59-68. DOI: 10.12073/j.hjxb.20231221001 |
[2] | YU Zhangqin, HU Jianhua, YANG Zheng, HUANG Shangyu. Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 120-128. DOI: 10.12073/j.hjxb.20211221001 |
[3] | DENG Lingbo, HUANG Shangyu, YANG Mei, QIAN Dongsheng, FENG Ke, OU Bing. Effect of field shaper structure on microstructure and properties of magnetic pulse assisted semi-solid brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 48-54. DOI: 10.12073/j.hjxb.20210513001 |
[4] | LI Juan, QIN Qingdong, LONG Qiong, ZHANG Yingzhe. Influence of the filler metals' forms on semi-solid pressure reaction brazing joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 139-144. DOI: 10.12073/j.hjxb.2019400250 |
[5] | YANG Jingwei1, CAO Biao2, LU Qinghua1. Investigation on the interfacial behavior of hybrid ultrasonic resistance welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 26-30. DOI: 10.12073/j.hjxb.2018390062 |
[6] | ZHANG Qingke, ZHONG Sujuan, ZHANG Lei, LONG Weimin, WANG Dezhi. Investigation on interfacial reaction behavior of brazed joint of austenitic stainless steel/Cu filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 75-78. |
[7] | WANG Chenxi, AN Rong, TIAN Yanhong, WANG Chunqing. Interfacial behavior between silver-plated copper wire and PCB pad during parallel micro gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 55-58. |
[8] | LÜ Shixiong, CUI Qinglong, HUANG Yongxian, JING Xiaojun. Analysis of interface fracture behavior of arc fusion-brazed joint between titanium and aluminum dissimilar alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 33-36. |
[9] | XU Huibin, YAN Jiuchun, LI Dachen, YANG Shiqin. Semi-solid vibration diffusion brazing of SiCp ZL101A composites[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 13-17. |
[10] | LIU Jun-hong, SUN Kang-ning, GONG Hong-yu, TAN Xun-yan. Interfacial microstructure of Al2O3-based ceramic composite/steel joint by brazing in air[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 26-28. |
1. |
曾邦兴,胡永俊,邹晓东,牛犇,易江龙. 保护气体对(Nb, Ti)C增强铁基复合堆焊层组织与性能的影响. 焊接. 2022(06): 33-41 .
![]() | |
2. |
魏炜,黄智泉,杨威,张海燕. Fe/C配比对等离子堆焊Fe-Cr-C合金组织及性能的影响. 电焊机. 2022(11): 37-42 .
![]() |