Advanced Search
YANG Linyi, XU Mingsan, YE Jianhua, WEI Tieping. Mechanical properties of arch lattice structures with different offset ratios by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 95-102, 109. DOI: 10.12073/j.hjxb.20230816001
Citation: YANG Linyi, XU Mingsan, YE Jianhua, WEI Tieping. Mechanical properties of arch lattice structures with different offset ratios by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 95-102, 109. DOI: 10.12073/j.hjxb.20230816001

Mechanical properties of arch lattice structures with different offset ratios by selective laser melting

More Information
  • Received Date: August 15, 2023
  • Available Online: June 21, 2024
  • In order to study the effects of different offset ratios on the mechanical properties of the arch lattice, 12 AlSi10Mg arch lattice samples with different offset ratios were formed by selective laser melting technology. Quasi-static compression tests were conducted to analyze the effects of offset ratios on the compressive strength and elastic modulus of the lattice. Combined with finite element simulation and compression test, the influence of the change of stress concentration on the failure mode of arch lattice with different offset ratios was analyzed. The results show that the compressive strength and elastic modulus of the arch lattice reach the maximum value when the offset ratio is 20%, and the compressive strength and elastic modulus of the arch lattice are increased by 49% and 28%, respectively. With the increase of the offset ratios, the stress concentration of the lattice first diffuses from the node to the member at both ends of the node, and the failure form of the lattice changes from layer by layer collapse to shear fracture. At this time, the increase of the offset ratios has a strengthening effect on the node of the lattice, and then there is a trend of concentration to the node, and the central stress of the node gradually decreases, and the failure form of the lattice changes from shear fracture to shear fracture with the collapse of the node. At this time, the increase of the offset ratios weakens the node strength of the lattice.

  • [1]
    顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32 − 55.

    Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Laser, 2020, 47(5): 32 − 55.
    [2]
    范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007(1): 99 − 112.

    Fan Hualin, Yang Wei. Research progress of lightweight high-strength lattice materials and their mechanical properties[J]. Advances In Mechanics, 2007(1): 99 − 112.
    [3]
    刘飞, 唐艺川, 谢海琼, 等. 选区激光熔化成形极小曲面点阵的结构和性能优化[J]. 中国激光, 2023, 50(12): 222 − 235.

    Liu Fei, Tang Yichuan, Xie Haiqiong, et al. Optimization of structure and performance of minimal surface lattice formed by selective laser melting[J]. Chinese Journal of Laser, 2023, 50(12): 222 − 235.
    [4]
    江尧峰, 许明三, 曾寿金, 等. SLM成型316L体心立方点阵结构力学性能优化[J]. 塑性工程学报, 2023, 30(4): 178 − 186.

    Jiang Yaofeng, Xu Mingsan, Zeng Shoujin, et al. Optimization of mechanical properties of 316L body centered cubic lattice structure formed by SLM[J]. Journal of Plasticity Engineering, 2023, 30(4): 178 − 186.
    [5]
    徐榕蔚, 张振杰, 刘清原, 等. 选区激光熔化制备多孔结构的成形偏差及力学性能与压缩失效分析[J]. 焊接学报, 2022, 43(10): 49 − 56. doi: 10.12073/j.hjxb.20211005001

    Xu Rongwei, Zhang Zhenjie, Liu Qingyuan, et al. The forming deviation, mechanical properties and compression failure of porous structures fabricated by laser melting were analyzed[J]. Transactions of the China Welding Institution, 2022, 43(10): 49 − 56. doi: 10.12073/j.hjxb.20211005001
    [6]
    尹浜兆, 秦瑜, 温鹏 , 等. 激光粉末床熔融制备金属骨植入物[J]. 中国激光, 2020, 47(11): 8 − 25.

    Yin Bangzhao, Qin Yu, Wen Peng, et al. Laser powder bed fusion for fabrication of metal orthopedic implants[J]. Chinese Journal of Laser, 2020, 47(11): 8 − 25.
    [7]
    都书, 阿依古丽·喀斯木, 张宇涛, 等. 选区激光熔化制备316L不锈钢点阵结构的力学性能研究[J]. 激光与光电子学进展, 2022, 59(19): 255 − 263.

    Du Shu, Kasimu Ayiguli, Zhang Yutao, et al. Mechanical properties of 316L stainless steel lattice structure prepared by selective laser melting[J]. Laser and Optoelectronics Progress, 2022, 59(19): 255 − 263.
    [8]
    聂云飞, 刘斌, 李忠华, 等. 基于选区激光熔化制备的点阵优化结构形貌和组织分析[J]. 应用激光, 2020, 40(2): 205 − 213.

    Nie Yunfei, Liu Bin, Li Zhonghua, et al. Morphologyand organization analysis of lattice optimized structure based on selective laser melting[J]. Applied Laser, 2020, 40(2): 205 − 213.
    [9]
    田杰, 黄正华, 戚文军, 等. 金属选区激光熔化的研究现状[J]. 材料导报, 2017, 31(S1): 90 − 94.

    Tian Jie, Huang Zhenghua, Qi Wenjun, et al. Research progress on selective laser melting of metal[J]. Materials Reports, 2017, 31(S1): 90 − 94.
    [10]
    章文献. 选择性激光熔化快速成形关键技术研究[D]. 武汉: 华中科技大学, 2008.

    Zhang Wenxian. Research on the key technologies for selective laser melting process[D]. Wuhan: Huazhong University of Science & Technology, 2008.
    [11]
    曾寿金, 吴启锐, 叶建华, 等. 选区激光熔化成型316L不锈钢多孔结构的力学性能[J]. 红外与激光工程, 2020, 49(8): 67 − 75.

    Zeng Shoujin, Wu Qirui, Ye Jianhua, et al. Mechanical properties of 316L stainless steel porous structure formed by selective laser melting[J]. Infrared and Laser Engineering, 2020, 49(8): 67 − 75.
    [12]
    Han C, Li Y, Wang Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants[J]. Journal of the Mechanical Behavier of Biomedical Materials, 2018, 80: 119 − 127.
    [13]
    Zhang X Y, Fang G, Xing L L, et al. Effect of porosity variation strategy on the performance of functionally graded Ti-6Al-4V scaffolds for bone tissue engineering[J]. Materials & Design, 2018, 157: 523 − 538.
    [14]
    Yan C, Hao L, Hussein A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implantsfabricated via selective laser melting[J]. Journal of the Mechanical Behavier of Biomedical Materials, 2015(51): 61 − 73.
    [15]
    Li P Y, Ma Y E, Sun W B, et al. Fracture and failure behavior of additive manufactured Ti6Al4V lattice structures under compressive load[J]. Engineering Fracture Mechanics, 2021, 244: 107537.
    [16]
    Yang L, Harrysson O, West H, et al. Compressive properties of Ti-6Al-4V auxetic mesh structures made byelectron beam melting[J]. Acta Materialia, 2012, 60(8): 3370 − 3379. doi: 10.1016/j.actamat.2012.03.015
    [17]
    Xu Y, Zhang D, Hu S, et al. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6A14V lattice structure[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99(11): 225 − 239.
    [18]
    Cao X F, Xiao D, Li Y , et al. Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure[J]. Thin-Walled Structures, 2020, 148: 106586
    [19]
    丁若晨. 基于激光选区熔化的金属点阵结构力学性能研究[D]. 广州: 中国科学院大学, 2021.

    Ding Ruochen. Study on mechanical properties of metal lattice structures based on selective laser melting[D]. Guangzhou: University of Chinese Academy of Sciences, 2021.
    [20]
    张唯, 杨孝梅, 蹇海根, 等. 选区激光熔化铝合金缺陷影响因素及形成机制[J]. 铸造工程, 2021, 45(6): 20 − 27. doi: 10.3969/j.issn.1673-3320.2021.06.004

    Zhang Wei, Yang Xiaomei, Jian Haigen, et al. Influence factors and formation mechanism of selective laser melting aluminum alloy defects[J]. Foundry Engineering, 2021, 45(6): 20 − 27. doi: 10.3969/j.issn.1673-3320.2021.06.004
    [21]
    吴鸿飞, 王维荣, 王国伟, 等. 选区激光熔化成形点阵结构的各向异性对力学性能的影响[J]. 稀有金属材料与工程, 2022, 51(4): 1397 − 1405. doi: 10.12442/j.issn.1002-185X.20210300

    Wu Hongfei, Wang Weirong, Wang Guowei, et al. The effect of anisotropy on mechanical properties of selective laser melting forming lattice structures[J]. Rare Metal Materials And Engineering, 2022, 51(4): 1397 − 1405. doi: 10.12442/j.issn.1002-185X.20210300
  • Related Articles

    [1]WENG Shuo, ZHOU Xiaoyang, LUO Linghua, YUAN Yiwen, FENG Jinzhi, SHAO Shanshan. Fatigue failure mechanism analysis and life prediction methods of fillet welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240427002
    [2]XU Rongwei, ZHANG Zhenjie, LIU Qingyuan, ZHANG Guanghui, LONG Yuhong. The forming deviation, mechanical properties and compression failure of porous structures fabricated by laser melting were analyzed[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 49-56. DOI: 10.12073/j.hjxb.20211005001
    [3]LYU Shuqiang, KIM Jihoon, CHO Haeyong. Connection performance of friction element welding between aluminum and high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 8-13. DOI: 10.12073/j.hjxb.20210310002
    [4]CHEN Jian, JI Xiang, WANG Xuan, XU Tengfei. Comparison of spot welding performance and failure analysis of CuNiCoBe and CuCrZr electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 101-106.
    [5]JING Hongyang, SHANG Jin, XU Lianyong, HAN Yongdian. Corrosion failure analysis for heat exchanger[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 1-4.
    [6]XING Baoying, HE Xiaocong, WANG Yuqi, LIU Fulong. Fatigue properties and failure mechanisms of self-piercing riveted joints in aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 50-54.
    [7]CUI Haipo, DENG Deng. Electromigration failure of Al-Si interconnects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 21-24.
    [8]LI Yongkui, LU Shanping, LI Dianzhong, KAJI Yoshiyuki. Life prediction of welded joint in core shroud of BWR due to SCC failure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 33-38.
    [9]JIANG Yunjian, JING Hongyang, XU Lianyong, WANG Qing, DAI Zhen. Effect of welding residual stress on type Ⅳ creep failure of P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 16-20.
    [10]Chen Zhuohua, Liu Yadi, Tang Guoyi, Su Yi, Cai Qigong. Failure analysis of steel usei in constructional elements of heavy-duty excavators[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (3): 187-192.

Catalog

    Article views (90) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return