Advanced Search
YU Xi, LI Qi, CHANG Ronghui, QIN Binhao, ZHANG Yupeng, YIN Limeng, WANG Haiyan. Influence of welding process parameters on the microstructure and shear strength of TA15/304SS vacuum diffusion welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 64-73. DOI: 10.12073/j.hjxb.20230630001
Citation: YU Xi, LI Qi, CHANG Ronghui, QIN Binhao, ZHANG Yupeng, YIN Limeng, WANG Haiyan. Influence of welding process parameters on the microstructure and shear strength of TA15/304SS vacuum diffusion welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 64-73. DOI: 10.12073/j.hjxb.20230630001

Influence of welding process parameters on the microstructure and shear strength of TA15/304SS vacuum diffusion welded joints

More Information
  • Received Date: June 29, 2023
  • Available Online: March 08, 2024
  • A study was conducted on the dissimilar metal connection and joint between TA15 titanium alloy and 304 stainless steel. The experimental results show that at welding temperatures of 850-950 ℃, the diffusion zone of the joint (β-Ti) District and (α + β) Ti biphasic region increases with the increase of temperature, element diffusion is more complete, joint pores gradually decrease, and an increasing number of layered products are observed. The layered products are mainly interface layers composed of intermetallic compounds, namely σ-Fe (1st layer), FeTi + Fe2Ti (2nd layer), FeTi + β-Ti (3rd layer) and β-Ti (4th layer). When the welding temperature is 900 ℃, the welded joint reaches its maximum shear strength of 108MPa. As the welding time increases, the microstructure and composition of the welded joint are similar to those of the welding temperature parameter joint, but the influence of welding time on the shear strength of the joint is relatively small. When the welding time is 80 minutes, the shear strength reaches its maximum value, and the fracture surface exhibits a brittle ductile mixed fracture feature dominated by toughness.

  • [1]
    李兴无, 沙爱学, 张旺峰, 等. TA15合金及其在飞机结构中的应用前景[J]. 钛工业进展, 2003(Z1): 90 − 94.

    Li Xingwu, Sha Aixue, Zhang Wangfeng, et al. TA15 alloy and its application prospect in aircraft structure[J]. Progress in Titanium Industry, 2003(Z1): 90 − 94.
    [2]
    El-Egamy S S, Badaway W A. Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions[J]. Journal of Applied Electrochemistry, 2004, 34: 1153 − 1158.
    [3]
    李宁, 王刚, 王廷, 等. Inconel 718镍基合金与304不锈钢电子束焊接[J]. 焊接学报, 2019, 40(2): 82 − 85.

    Li Ning, Wang Gang, Wang Ting, et al. Weldability of Inconel 718 and 304 stainless steel by electron beam welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 82 − 85.
    [4]
    Naveen Kumar N, Janaki Ram G D, Bhattacharya S S, et al. Spark plasma welding of austenitic stainless steel AISI 304L to commercially pure titanium[J]. Transactions of the Indian Institute of Metals, 2015, 68: 289 − 297. doi: 10.1007/s12666-015-0589-6
    [5]
    Hao X, Dong H, Li S, et al. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire[J]. Journal of Materials Processing Technology, 2018, 257: 88 − 100. doi: 10.1016/j.jmatprotec.2018.02.020
    [6]
    牛小男, 崔丽, 王鹏, 等. 镍铝青铜过渡层对钛合金/不锈钢异种材料激光焊接头组织与力学性能的影响[J]. 焊接学报, 2022, 43(1): 42 − 47.

    Niu Xiaonan, Cui Li, Wang Peng, et al. Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint[J]. Transactions of the China Welding Institution, 2022, 43(1): 42 − 47.
    [7]
    Zhao Yongtao, Hu Yuqing, Dong Junhui, et al. The effect of welding materials on 1Cr18Ni9Ti and 2Cr13 steel welded joints electrochemical properties[J]. China Welding, 2022, 31(3): 42 − 47.
    [8]
    苗玉刚, 林志成, 邹俊攀, 等. 旁路分流电弧钎焊钛/钢异种金属接头特性分析[J]. 焊接学报, 2019, 40(9): 99 − 103.

    Miao Yugang, Lin Zhicheng, Zou Junpan,et al. Characteristic of titanium/steel dissimilar metals joint brazed by bypass-current arc welding[J]. Transactions of the China Welding Institution, 2019, 40(9): 99 − 103.
    [9]
    Ghosh M, Chatterjee S. Characterization of transition joints of commercially pure titanium to 304 stainless steel[J]. Materials Characterization, 2002, 48(5): 393 − 399. doi: 10.1016/S1044-5803(02)00306-6
    [10]
    Velmurugan C, Senthilkumar V, Sarala S, et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel[J]. Journal of Materials Processing Technology, 2016, 234: 272 − 279. doi: 10.1016/j.jmatprotec.2016.03.013
    [11]
    周荣林, 何鹏, 李小强, 等. 钛合金/不锈钢网的扩散连接[J]. 宇航材料工艺, 1999(1): 46 − 50. doi: 10.3969/j.issn.1007-2330.1999.01.010

    Zhou Ronglin, He Peng, Li Xiaoqiang, et al. Diffusion bonding of titanium alloy/stainless steel mesh[J]. Aerospace Materials Technology, 1999(1): 46 − 50. doi: 10.3969/j.issn.1007-2330.1999.01.010
    [12]
    He P, Zhang J H., Li X Q. Diffusion bonding of titanium alloy to stainless steel wire mesh[J]. Materials Science and Technology, 2001, 17(9): 1158 − 1162. doi: 10.1179/026708301101511112
    [13]
    Vigraman T, Ravindran D, Narayanasamy R. Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti–6Al–4V and AISI 304L[J]. Materials & Design, 2012, 36(4): 714 − 727.
    [14]
    高旺旺. TA2/S316扩散焊接头组织与性能研究[D]. 济南: 山东大学, 2020.

    Gao Wangwang. Study on the structure and properties of TA2/S316 diffusion welded joint [D]. Jinan: Shandong University, 2020.
    [15]
    李明兵, 王新南, 商国强, 等. 近α型、(α + β)型和近β型钛合金的高温力学性能[J]. 金属热处理, 2022, 47(11): 199 − 205.

    Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. High temperature mechanical properties of near-α type, (α + β) type and near-β type titanium alloy[J]. Heat Treatment of Metals, 2022, 47(11): 199 − 205.
    [16]
    Nakajima H, Koiwa M. Diffusion in titanium[J]. ISIJ International, 1991, 31(8): 757 − 766. doi: 10.2355/isijinternational.31.757
    [17]
    Mukherjee A B, Laik A, Kain V, et al. Shrinkage-stress assisted diffusion bonds between titanium and stainless steel: a novel technique[J]. Journal of Materials Engineering and Performance, 2016, 25: 4425 − 4436. doi: 10.1007/s11665-016-2284-0
    [18]
    Kumar R R, Gupta R K, Sarkar A, et al. Vacuum diffusion bonding of α-titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics[J]. Materials Characterization, 2022, 183: 111607. doi: 10.1016/j.matchar.2021.111607
    [19]
    Zhong Z, Hinoki T, Nozawa T, et al. Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer[J]. Journal of Alloys and Compounds, 2010, 489(2): 545 − 551. doi: 10.1016/j.jallcom.2009.09.105
    [20]
    姚尚君, 苗鑫, 陈思杰, 等. 焊接温度对钛/钢复合管瞬时液相扩散焊接头组织与性能的影响[J]. 机械工程材料, 2023, 47(2): 33 − 38. doi: 10.11973/jxgccl202302006

    Yao Shangjun, Miao Xin, Chen Sijie, et al. Effect of welding temperature on microstructure and properties of instantaneous liquid diffusion welding head of titanium/steel composite pipe[J]. Materials for Mechanical Engineering, 2023, 47(2): 33 − 38. doi: 10.11973/jxgccl202302006
    [21]
    Kundu S, Sam S, Chatterjee S. Evaluation of interface microstructure and mechanical properties of the diffusion bonded joints of Ti–6Al–4V alloy to micro-duplex stainless steel[J]. Materials Science and Engineering:A, 2011, 528(15): 4910 − 4916. doi: 10.1016/j.msea.2011.02.050
    [22]
    杜正勇, 李宇轩, 刘煜纯, 等. 铜/钢异种金属焊接技术研究现状[J]. 焊接, 2023(9): 1 − 23.

    Du Zhengyong, Li Yuxuan, Liu Yuchun, et al. Research status of copper/steel dissimilar metal welding[J]. Welding & Joining, 2023(9): 1 − 23.
    [23]
    钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006.

    Zhong Qunpeng, Zhao Zihua. Fracture Science[M]. Beijing: Higher Education Press, 2006.
    [24]
    郭峰, 李志. 断裂韧度与钢组织性能的关系[J]. 失效分析与预防, 2007, 2(4): 59 − 64.

    Guo Feng, Li Zhi. Relationship between fracture toughness and steel microstructure[J]. Failure Analysis and Prevention, 2007, 2(4): 59 − 64.
  • Related Articles

    [1]LI YuLong, SONG ZiMing, WU Qi, LIN Wei, ZHANG Lin, PAN Pan, LEI Min. Analysis of the microstructure and mechanical properties of the interface between diamond and oxygen free copper brazing joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION.
    [2]QIAO Lixue, YU Gang, DONG Hao, CAO Rui, CHE Hongyan, WANG Tiejun. Effect of heat treatment process on microstructure and mechanical properties of M390/304 CMT welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 49-56. DOI: 10.12073/j.hjxb.20220325011
    [3]TAO Yong, WANG Rui, SONG Kuijing, LIU Dashuang, ZHONG Zhihong, WU Yucheng. Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 29-35. DOI: 10.12073/j.hjxb.20210802001
    [4]LI Huan, ZHOU Kang, ZHANG Jinzhou, YANG Xiong, CAO Biao. Influence of process parameters on microstructure and mechanical properties in high power ultrasonic welding of Cu/Al[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 20-25. DOI: 10.12073/j.hjxb.20191029002
    [5]WANG Haiyan, NIU Chunju, CUI Guotao, ZHAI Haizhou. Study of microstructure and properties of TP304/SS400 dissimilar welding joints under three processes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 131-136. DOI: 10.12073/j.hjxb.2019400140
    [6]ZHANG Chuanchen, ZHANG Tiancang, LIU Ying. Cycle fatigue properties of TA15 titanium alloy linear friction welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 105-108. DOI: 10.12073/j.hjxb.2018390133
    [7]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [8]CHEN Guoqing, ZHANG Binggang, WANG Ting, FENG Jicai. Microstructure and mechanical properties of submerged arc welded TA15 titanium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 5-8.
    [9]YAN Keng, FENG Xinmei, ZHAO Yong, CAO Liang. Influences of processing parameters on mechanical properties of com-stir friction stir spot welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 5-8.
    [10]WANG Li-fa, LIU Jian-zhong, HU Ben-run. Mechanical properties of TA15 titanium alloy electron beam welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 97-100.

Catalog

    Article views (166) PDF downloads (50) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return