Advanced Search
QIAO Lixue, YU Gang, DONG Hao, CAO Rui, CHE Hongyan, WANG Tiejun. Effect of heat treatment process on microstructure and mechanical properties of M390/304 CMT welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 49-56. DOI: 10.12073/j.hjxb.20220325011
Citation: QIAO Lixue, YU Gang, DONG Hao, CAO Rui, CHE Hongyan, WANG Tiejun. Effect of heat treatment process on microstructure and mechanical properties of M390/304 CMT welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 49-56. DOI: 10.12073/j.hjxb.20220325011

Effect of heat treatment process on microstructure and mechanical properties of M390/304 CMT welded joints

More Information
  • Received Date: March 24, 2022
  • Available Online: January 12, 2023
  • In order to improve the mechanical properties of M390 high carbon martensitic stainless steel and 304 austenitic stainless steel welded joints, especially the hardness of welded joints to meet the requirements of advanced knives production, different heat treatment processes of welded joints were performed for M390 high carbon martensitic stainless steel and 304 austenitic stainless steel joints obtained by cold metal transfer welding. Tensile, Vickers microhardness tests and scanning electron microscopy (SEM) were used to characterize the mechanical properties and microstructure evolution of welded joints with different heat treatment processes, the carbide distributions of M390 base metal, M390 fine-grained region and M390 coarse-grained region in welded joints under different heat treatment processes were calculated, the fracture mechanism of welder joints under different heat treatment processes was studied. The research results show that the water quenching at 1 150 ℃ heat treatment process not only meets the hardness requirements of advanced knives, but also has good mechanical properties, and can be used as the best heat treatment process for M390/304 welded joints, the tensile strength and elongation of the corresponding welded joints reach 502 MPa and 20.8%, the tensile strength and elongation of the corresponding welded joints reach 98% and 95% of as-welded joint. The average size of carbides in M390 base metal, fine-grained region and coarse-grained region of water quenching at 1 150 ℃ heat treatment process is the smallest, and the carbide morphology is uniformly distributed in small blocks. With the increase of quenching temperature, both the tensile strength and elongation showed a trend of first decreasing and then increasing. With the decrease of cooling rate, both the tensile strength and elongation showed a decreasing trend. The welded joints under different heat treatment processes are fractured at the interface between M390 coarse-grained region and weld metal, where the hardness varies greatly, and there is a phenomenon of uneven stress distribution.
  • 王铁军, 杨博, 梁晨, 等. 退火温度对热轧态M390组织与性能的影响[J]. 材料导报, 2020, 34(12): 12122 − 12126. doi: 10.11896/cldb.19110119

    Wang Tiejun, Yang Bo, Liang Cheng, et al. Effect of annealing temperature on microstructure and mechanical property of hot-rolled M390[J]. Materials Reports, 2020, 34(12): 12122 − 12126. doi: 10.11896/cldb.19110119
    Irvine K J, Crowe D J, Pickering F B. The Metallurgical Evolution of Stainless Steels[J], American Society for Metals, 1979: 43–62.
    Toshihiro Tsuchiyama, Junya Tobata, Teruyuki Tao, et al. Quenching and partitioning treatment of a low-carbon martensitic stainless steel[J]. Materials Science and Engineering A. 2012: 585-592.
    邹宗园, 王宏中, 陈雷, 等. 亚稳双相不锈钢中奥氏体相尺寸对TRIP效应的影响[J]. 塑性工程学报, 2020, 27(11): 131 − 136. doi: 10.3969/j.issn.1007-2012.2020.11.020

    Zou Zongyuan, Wang Hongzhong, Chen Lei, et al. Effect of austenite phase size on TRIP effect in metastable duplex stainless steel[J]. Journal of Plasticity Engineering, 2020, 27(11): 131 − 136. doi: 10.3969/j.issn.1007-2012.2020.11.020
    叶文君, 胡隆伟, 王川. 高碳马氏体不锈钢440C的热处理工艺[J]. 金属加工(热加工), 2014(03): 46 − 47.

    Ye Wenjun, Hu Longwei, Wang Chuan. Heat treatment process of high carbon martensitic stainless steel 440C[J]. Metal Working (Hot Working), 2014(03): 46 − 47.
    谢江怀, 范淇元. 04Cr13Ni5Mo超级马氏体不锈钢淬火工艺研究[J]. 热加工工艺, 2019, 48(22): 43 − 45. doi: 10.14158/j.cnki.1001-3814.2019.22.034

    Xie Jianghuai, Fan Qiyuan. Study on quenching process of 04Cr13Ni5Mo super martensitic stainless steel[J]. Hot Working Technology, 2019, 48(22): 43 − 45. doi: 10.14158/j.cnki.1001-3814.2019.22.034
    杜瑜宾, 胡小锋, 姜海昌, 等. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11 − 20. doi: 10.11900/0412.1961.2017.00231

    Du Yubing, Hu Xiaofeng, Jiang Haichang, et al. Effect of tempering time on carbide evolution and mechanical properties of Fe-Cr-Ni-Mo high strength steel[J]. Acta Metallurgica Sinica, 2018, 54(1): 11 − 20. doi: 10.11900/0412.1961.2017.00231
    潘家栋, 王家庆, 陈国宏, 等. Super304H耐热钢的热稳定性[J]. 中国科技论文, 2012, 7(2): 95 − 100. doi: 10.3969/j.issn.2095-2783.2012.02.003

    Pan Jiadong, Wang Jiaqing, Chen Guohong, et al. Thermal stability of super304H heat-resistant steel[J]. Chinese Scientific Papers, 2012, 7(2): 95 − 100. doi: 10.3969/j.issn.2095-2783.2012.02.003
    李萌盛, 赵瑛, 严红丹, 等. T91与SUS304异种钢接头热稳定性研究[J]. 电焊机, 2009, 39(11): 88 − 90. doi: 10.3969/j.issn.1001-2303.2009.11.022

    Li Mengsheng, Zhao Ying, Yan Hongdan, et al. Study on thermal stability of T91 and SUS304 dissimilar steel joints[J]. Electric Welding Machine, 2009, 39(11): 88 − 90. doi: 10.3969/j.issn.1001-2303.2009.11.022
    朱洪羽. P92钢和Inconel 625合金激光焊接及焊后热处理研究[D]. 上海交通大学, 2018.

    Zhu Hongyu. Study on laser welding and post-weld heat treatment of P92 steel and Inconel 625 alloy[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    占礼春, 马党参, 迟宏宵, 等. 冷作模具钢奥氏体化过程的碳化物溶解情况[J]. 钢铁研究学报, 2012, 24(10): 29 − 32.

    Zhan Lichun, Ma Dangcan, Chi Hongxiao, et al. Dissolution of carbides during austenitization of cold work die steel[J]. Journal of Iron and Steel Research, 2012, 24(10): 29 − 32.
    林发驹, 李雄, 吴铖川. 冷轧辊用半高速钢碳化物细化工艺技术研究[J]. 钢铁钒钛, 2021, 42(3): 162 − 171. doi: 10.7513/j.issn.1004-7638.2021.03.025

    Lin Faju, Li Xiong, Wu Chengchuan. Research on carbide refining process technology of semi-high speed steel for cold roll[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 162 − 171. doi: 10.7513/j.issn.1004-7638.2021.03.025
    尹超, 徐涛, 张卫兵, 等. 几种碳化物与钴在不同烧结温度下的相互作用与影响[J]. 粉末冶金材料科学与工程, 2016, 21(1): 116 − 122. doi: 10.3969/j.issn.1673-0224.2016.01.016

    Yin Chao, Xu Tao, Zhang Weibing, et al. Interaction and influence of several carbides and cobalt at different sintering temperatures[J]. Materials Science and Engineering of Powder Metallu, 2016, 21(1): 116 − 122. doi: 10.3969/j.issn.1673-0224.2016.01.016
    郝康达. 面向无头轧制的马氏体不锈钢激光电弧复合焊接关键技术与机理研究[D]. 华中科技大学, 2017.

    Hao Kangda. Laser-Arc Hybrid Welding of Martensitic Stainless Steel for Endless Rolling[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    Gu J F, Tao X G , Han L Z. Effect of tempering on microstructure evolution and mechanical properties of X12CrMoWVNbN10-1-1 steel[J]. Materials Science & Engineering: A, 2014, 618: 189 − 204.
    Anders Bjärbo, Mats, Hättestrand. Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—an experimental and theoretical study[J]. Metallurgical and Materials Transactions A, 2001, 32A(1): 19 − 27.
    Kang M, Park G, Jung J G, et al. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel[J]. Journal of Alloys & Compounds, 2015, 627: 359 − 366.
  • Related Articles

    [1]DONG Yijun, WANG Yonggang, LI Dongya, ZHU Shanshan, XU Shuhong, WANG Yao. Heat treatment tailoring of microstructure and properties of laser cladding carbide reinforced nickel based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 59-68. DOI: 10.12073/j.hjxb.20231221002
    [2]YU Tingxiang, FENG Wei, CHEN Bo, ZHANG Qingsu, ZHOU Baojin, LIU Xin, LIU Manyu. Mechanism of heat treatment temperature on microstructure and properties in deposited metal of 1000 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 97-104, 112. DOI: 10.12073/j.hjxb.20231103001
    [3]FAN Jiawei, LI Zhuoxuan, WU Haosheng, LIU Guangyin, ZHANG Jianxiao, HUANG Jiankang. Numerical study of the effect of carbide precipitation on the mechanical properties of ENiCrFe-3 pre-edge welded dissimilar steel welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 67-73. DOI: 10.12073/j.hjxb.20220721001
    [4]FU Lichao, ZHAO Xin, YANG Qingxiang. Precipitation behavior of carbide in hardfacing coating containing Nb[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 39-43.
    [5]SU Yunhai, MA Dahai, QIN Hao, LIU Zhengjun. Formation mechanism of Cr7C3 hard phase under magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 63-66.
    [6]TANG Wenbo, GUO Yungang, ZHANG Yawei, WANG Hongrui. Microstructures and wear resistance of hardfacing alloy containing internally produced carbide particulates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 73-76.
    [7]LEI Yucheng, GU Kangjia, ZHU Qiang, CHEN Xizhang, JU Xin, CHANG Fenghua. Hardness and microstructure of China low activation martensitic steel fusion welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 9-12.
    [8]ZHANG Tianhong, DU Yi, ZHANG Junxu. Effect of carbon and nitrogen on microstructure and properties of austenite weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 81-84,88.
    [9]LU Fenggui, LU Binfeng, TANG Xinghua, YAO Shun. Chromium Carbide in situ synthesis by vacuum electron beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 34-36.
    [10]ZHANG Yuan-bin, Ren deng-yi. Study on Carbides in Surfacing Layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 38-40.
  • Cited by

    Periodical cited type(2)

    1. 曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 . 本站查看
    2. 李冬毓,孙万田. 稳定化热处理对厚壁TP347钢管焊接接头组织和性能的影响. 焊接. 2023(05): 45-50 .

    Other cited types(1)

Catalog

    Article views (297) PDF downloads (60) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return