Citation: | WANG Zhenmin, JIA Jianjun, HU Jianliang, LIAO Haipeng, WU Jianwen, ZHANG Qin. Research on local dry underwater fast-frequency pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 13-19. DOI: 10.12073/j.hjxb.20230620002 |
Aiming at the ultra-high dynamic characteristics and precise control requirements of welding power supply in the extremely complex underwater environment, the main circuit of fast-frequency pulsed welding power supply based on SiC module is designed, an all-digital control system is developed, and the local dry underwater fast-frequency pulsed MIG (LDU-FFPMIG) welding power supply is exploited. The welding power supply has a rated output current of 400 A, which can accurately output fast-frequency pulsed current waveforms with the fast-frequency frequency of 0~30 kHz and the fast-frequency current amplitude of 200 A. A new LDU-FFPMIG process is proposed, and the fast-frequency pulsed is applied to perform 304 stainless steel local dry underwater MIG welding, the influence of fast-frequency pulsed on local dry underwater pulsed MIG welding is revealed. The results show that the self-developed LDU-FFPMIG welding power supply achieves stable local dry underwater MIG welding and good weld formation. The introduction of fast-frequency pulsed current significantly improves arc energy density and arc stability, reduces the melting width (B), increases the penetration depth (H), reduces the weld forming coefficient (B/H) by about 30%, and refines the grain.
[1] |
Sehgal Anuj Kumar. An investigation of variable welding current on impact strength of metal inert gas welded specimen[J]. Mater Today-Proceedings, 2021, 37: 3679 − 3682. doi: 10.1016/j.matpr.2020.10.151
|
[2] |
Wang Zhenmin, Pei Kai, Han Leigang, et al. Effect of pulse frequency on droplet transfer and weld formation in local dry underwater welding[J]. Journal of Manufacturing Processes, 2021, 68: 1726 − 1734. doi: 10.1016/j.jmapro.2021.06.065
|
[3] |
Liao Haipeng, Zhang Wenxu, Xie Huimin, et al. Effects of welding speed on welding process stability, microstructure and mechanical performance of SUS304 welded by local dry underwater pulsed MIG[J]. Journal of Manufacturing Processes, 2023, 88: 84 − 96. doi: 10.1016/j.jmapro.2023.01.047
|
[4] |
Liao Haipeng, Zhang Wenxu, Li Xuyan, et al. Numerical simulation and experimental verification of droplet transfer during local dry underwater MIG welding process of SUS304[J]. Journal of Materials Research and Technology, 2022, 21: 1960 − 1973. doi: 10.1016/j.jmrt.2022.10.040
|
[5] |
Liao Haipeng, Zhang Wenxu, Li Xuyan, et al. Effect of pulse current on droplet transfer behavior and weld formation of 304 stainless steel in local dry underwater pulse MIG welding[J]. International Journal of Advanced Manufacturing Technology, 2022, 122(2): 869 − 879. doi: 10.1007/s00170-022-09938-y
|
[6] |
高辉, 焦向东, 周灿丰, 等. 水下高压局部干式自动焊接试验装置控制系统[J]. 焊接学报, 2008, 29(10): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.10.017
Gao Hui, Jiao Xiangdong, Zhou Canfeng, et al. Control system of underwater high-pressure local dry automatic welding testing apparatus[J]. Transactions of the China Welding Institution, 2008, 29(10): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.10.017
|
[7] |
蒋力培, 王中辉, 焦向东, 等. 水下焊接高压空气环境下GTAW电弧特性[J]. 焊接学报, 2007, 28(6): 1 − 4. doi: 10.3321/j.issn:0253-360X.2007.06.001
Jiang Lipei, Wang Zhonghui, Jiao Xiangdong, et al. Characteristics of GTAW arc in underwater welding under high-pressure air condition[J]. Transactions of the China Welding Institution, 2007, 28(6): 1 − 4. doi: 10.3321/j.issn:0253-360X.2007.06.001
|
[8] |
Krishna Prasad S, Mathiazhagan A. Underwater eelding: A review paper[J]. Indian Welding Journal, 2021, 54(1): 56 − 63.
|
[9] |
Wu Jianwen, Wang Zhenmin, Lin Sanbao, et al. Effect of fast-frequency pulsed waveforms on the microstructure and mechanical properties of Ti-6Al-4V alloy welded by FFP-TIG[J]. Journal of Materials Research and Technology, 2022, 20: 516 − 531. doi: 10.1016/j.jmrt.2022.07.126
|
[10] |
吴健文, 徐孟嘉, 范文艳, 等. 钛合金快频脉冲柔性波形调制TIG焊接工艺[J]. 机械工程学报, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102
Wu Jianwen, Xu Mengjia, Fan Wenyan, et al. Fast-frequency pulse flexible waveform modulation TIG welding process for titanium alloy[J]. Journal of Mechanical Engineering, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102
|
[11] |
Kuang Xiaocong, Qi Bojin, Zheng Hao. Effect of pulse mode and frequency on microstructure and properties of 2219 aluminum alloy by ultrahigh-frequency pulse metal-inert gas welding[J]. Journal of Materials Research and Technology, 2022, 20: 3391 − 3407. doi: 10.1016/j.jmrt.2022.08.094
|
[12] |
Chen Qihao, Tang Jianxing, Wang Jiayou, et al. Effect of alternating ultrasonic frequency electric signal on the distribution of pore in aluminum alloy weld[J]. China Welding, 2021, 30(1): 13 − 20.
|
[13] |
钟启明, 谢芳祥, 王振民. 新型双脉冲 MIG 焊接电源[J]. 焊接学报, 2019, 40(7): 94 − 99. doi: 10.12073/j.hjxb.2019400188
Zhong Qiming, Xie Fangxiang, Wang Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. Transactions of the China Welding Institution, 2019, 40(7): 94 − 99. doi: 10.12073/j.hjxb.2019400188
|
[14] |
王振民, 汪倩, 王鹏飞, 等. 新一代WBG弧焊逆变电源[J]. 焊接学报, 2016, 37(7): 49 − 52.
Wang Zhenmin, Wang Qian, Wang Pengfei, et al. A new generation WBG arc welding inverter[J]. Transactions of the China Welding Institution, 2016, 37(7): 49 − 52.
|
[15] |
李滨. ISOP-FB高频焊接电源研究[D]. 北京: 北京工业大学, 2020.
Li Bin. Research on ISOP-FB high frequency welding power source[D]. Beijing: Beijing University of Technology, 2020.
|
[16] |
饶杰, 吴健文, 江东航, 等. 基于SiC模块的脉冲变极性焊接电源研制[J]. 焊接学报, 2021, 42(7): 21 − 27. doi: 10.12073/j.hjxb.20201211001
Rao Jie, Wu Jianwen, Jiang Donghang, et al. Development of pulse variable polarity welding power source based on SiC modules[J]. Transactions of the China Welding Institution, 2021, 42(7): 21 − 27. doi: 10.12073/j.hjxb.20201211001
|
[17] |
Ma Qiang, Luo Chuncheng, Liu Shixiong, et al. Investigation of arc stability, microstructure evolution and corrosion resistance in underwater wet FCAW of duplex stainless steel[J]. Journal of Materials Research and Technology, 2021, 15: 5482 − 5495. doi: 10.1016/j.jmrt.2021.11.023
|
[1] | SUN Qingjie, ZHANG Qinghua, ZHAO Yongqing, GUO Jiawei, LI Tianyou, BAN Huakang, HOU Shaojun. Local dry underwater TIG welding process of positioning pin in nuclear power plant[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 7-12. DOI: 10.12073/j.hjxb.20230313003 |
[2] | RAO Jie, WU Jianwen, JIANG Donghang, TANG Jiajian, WANG Zhenmin. Development of pulse variable polarity welding power source based on SiC modules[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 21-27. DOI: 10.12073/j.hjxb.20201211001 |
[3] | ZHONG Qiming, XIE Fangxiang, WANG Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188 |
[4] | SHAO Zhujing, CHENG Fangjie, ZHANG Shuai, WANG Dongpo, CAO Jun. Investigation on arc preheating of local dry underwater welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 124-128. DOI: 10.12073/j.hjxb.2018390286 |
[5] | ZHANG Shuaifeng<sup>1</sup>, CHENG Fangjie<sup>1,2</sup>, WANG Dongpo<sup>1,2</sup>, GUO Hongwei<sup>3</sup>, XU Wei<sup>3</sup>. Optimization of underwater welding process in stationary local dry cavity and analysis of welding joint properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 99-104. DOI: 10.12073/j.hjxb.2018390232 |
[6] | SHEN Xiangxing1, CHENG Fangjie1,2, DI Xinjie1, WANG Dongpo1,2, CAO jun3. Local-dry underwater welding preheating technology and development of special drain cover[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 112-116. DOI: 10.12073/j.hjxb.2018390080 |
[7] | WANG Zhenmin, XIE Fangxiang, FENG Yunliang, ZHANG Qin. Underwater robot local dry welding system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 5-8. |
[8] | GAO Wenbin, WANG Dongpo, CHENG Fangjie, DENG Caiyan, XU Wei. Influence of ambient pressure on the electrode arc stability of local dry underwater welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 125-128. |
[9] | LI Lan, XUE Long, HUANG Junfen, HUANG Jiqiang. Simulation of fluid in cylindrical drainage cover for underwater local dry welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 43-46,107. |
[10] | SHA Deshang, Liao Xiaozhong. Full digital control of I/I mode pulsed MIG welding based on triple closed loop control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 5-7,12. |
1. |
王振民,宋哲龙,迟鹏,廖海鹏,张芩. 类人机器人焊接技术研究现状与展望. 机电工程技术. 2025(04): 1-13 .
![]() | |
2. |
刘帅,丁宁. 探析轻量化材料连接工艺. 铝加工. 2024(04): 3-11 .
![]() | |
3. |
董庆,马明明,廖伟,高明. 振荡激光-电弧复合焊接6082铝合金组织与性能研究. 机车车辆工艺. 2024(06): 1-5+15 .
![]() |